Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24070166-7    https://doi.org/10.11896/cldb.24070166
  金属与金属基复合材料 |
硼元素及热轧对CuAlNi合金微观组织和力学性能的影响
杨院霞1, 郝刚领1,*, 千佳祥1, 王幸福2, 许巧平1, 王伟国1
1 延安大学物理与电子信息学院,陕西 延安 716000
2 中国科学院固体物理研究所材料物理重点实验室,合肥 230031
Effect of Boron Addition and Hot Rolling on Microstructure and Mechanical Properties of CuAlNi Alloy
YANG Yuanxia1, HAO Gangling1,*, QIAN Jiaxiang1, WANG Xingfu2, XU Qiaoping1, WANG Weiguo1
1 College of Physics and Electronic Information, Yan’an University, Yan’an 716000, Shaanxi, China
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
下载:  全 文 ( PDF ) ( 42620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CuAlNi形状记忆合金因优良的功能特性在多种领域有广泛的目标需求,但晶粒粗大易导致脆性沿晶断裂,力学强度被严重弱化。本工作采用微量B元素添加结合热轧工艺调控合金的微观结构,探究Cu-12Al-4Ni合金力学性能与微观结构对B添加和热轧的响应规律。结果表明,适量B元素可显著细化晶粒,晶粒细化归因于B元素限制生长和AlB2的异质成核作用。热轧形变处理后,晶粒破碎和退火再结晶使得晶粒进一步细化,且细化程度随形变量的增加而增大。B元素添加和热轧可显著提升合金的拉伸断裂强度,B含量为0.2%时,合金抗拉强度由391.8 MPa提升至562.9 MPa,热轧80%后,进一步提升至904.0 MPa。合金力学性能的提升源于细晶强化、沉淀强化和形变强化的协同作用。相同预应变下,合金的形状记忆效应在B元素添加和热轧形变后出现一定程度的降低,这与沉淀相的生成和轧制引入的缺陷有关。本工作还从微观结构演变入手系统探讨了合金力学性能提升和形状记忆效应衰减的物理机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨院霞
郝刚领
千佳祥
王幸福
许巧平
王伟国
关键词:  CuAlNi形状记忆合金  B元素添加  热轧  微观结构  力学性能    
Abstract: CuAlNi shape memory alloys have widely targeted requirements in quite numbers of fields due to their excellent functional properties. However coarse grain size can lead to brittle intergranular fracture that significantly weaken mechanical strength. This study was concentrated on the response law of mechanical properties and microstructure evolution of Cu-12Al-4Ni alloy toward boron addition and hot rolling. The microstructure was tailored by incorporating trace amounts of B element addition and combining with hot rolling process. The results indicated that the grain refinement was due to the growth restriction of B element and the heterogeneous nucleation of AlB2. After hot rolling deformation treatment, the grain refinement was further refined by grain crushing and annealing recrystallization, and the degree of refinement increased with the increase of the shape variable. The tensile fracture strength of the alloy drastically increased owing to the B element addition and hot rolling. Specifically, with a B content of 0.2%, the tensile strength of the alloy increased from 391.8 MPa to 562.9 MPa, and further rising to 904.0 MPa upon hot-rolled to 80% deformation. The mechanical properties enhancement of the alloy originated from the synergistic effect of fine grain strengthening, precipitation strengthening and deformation strengthening. Under the same pre-strain conditions, the shape memory effect of the alloy decreased to a certain extent after B addition and hot rolling deformation, which could be related to the formation of precipitated phase and the defects introduction by rolling. The physical mechanism of the improvement of mechanical properties and the attenuation of shape memory effect was also systematically discussed from the perspective of microstructure evolution.
Key words:  CuAlNi shape memory alloy    boron element addition    hot rolling    microstructure    mechanical properties
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金 (52061038;12064044;51661032;51301150);延安大学研究生教育创新计划项目(YCX2024085)
通讯作者:  *郝刚领,理学博士,延安大学物理与电子信息学院教授、硕士研究生导师。主要从事内耗与固体缺陷、高阻尼材料、形状记忆合金以及超轻泡沫金属材料的制备、性能及应用的基础研究。glhao@issp.ac.cn   
作者简介:  杨院霞,目前为延安大学物理与电子信息学院凝聚态物理专业硕士研究生,在郝刚领教授的指导下主要开展Cu基形状记忆合金力学性能和功能特性方面的研究。
引用本文:    
杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
YANG Yuanxia, HAO Gangling, QIAN Jiaxiang, WANG Xingfu, XU Qiaoping, WANG Weiguo. Effect of Boron Addition and Hot Rolling on Microstructure and Mechanical Properties of CuAlNi Alloy. Materials Reports, 2025, 39(13): 24070166-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070166  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24070166
1 Zhang Y K, Xu L Y, Zhao L, et al.Journal of Materials Science & Technology, 2023, 152, 1.
2 Saud S N, Hamzah E, Abubakar T, et al.Jurnal Teknologi, 2013, 64(1), 51.
3 Wang Q Z, Yao C, Lu D M, et al.Materials Letters, 2023, 330, 133392.
4 Yang L, Jiang X S, Sun H L, et al.Nanotechnology Reviews, 2021, 10(1), 1560.
5 Su Y L, Luo B H, Bai Z H, et al.Materials Reports, 2021, 35(20), 20137 (in Chinese).
苏粤兰, 罗兵辉, 柏振海, 等. 材料导报, 2021, 35(20), 20137.
6 Ren C X, Wang Q, Hou J P, et al.Materials Science and Engineering A, 2020, 786, 139441.
7 Xu Y Z, Wang X K, Chang L H, et al.Materials Reports, 2022, 36(23), 21030294 (in Chinese).
徐英卓, 王秀凯, 常麟晖, 等. 材料导报, 2022, 36(23), 21030294.
8 Ding Y J, Wang Q Z, Yin F X, et al.Materials Science and Engineering A, 2019, 743, 606.
9 Vajpai S K, Dube R K, Sangal S.Materials Science and Engineering A, 2013, 570, 32.
10 Dalvand P, Raygan S, López G A, et al.Materials Research Express, 2019, 6(11), 116512.
11 Lee J S, Wayman C M.Transactions of the Japan Institute of Metals, 1986, 27(8), 584.
12 Zhang X, Liu Q S.Intermetallics, 2018, 92, 108.
13 Svirid A E, Kuranova N N, Makarov V V, et al.Physics of Metals and Metallography, 2023, 124, 504.
14 Zhang X, Cui B, Sun B, et al.Acta Metallurgica Sinica, 2022, 58(8), 1065 (in Chinese)
张鑫, 崔博, 孙斌, 等. 金属学报, 2022, 58(8), 1065.
15 Zhang X, Sui J H, Liu Q S, et al.Materials Letters, 2016, 180, 223.
16 Svirid A E, Afanasiev S V, Davydov D I, et al.Metals, 2023, 13, 967.
17 Kalinga T, Murigendrappa S M, Kattimani S.Journal of Materials Engineering and Performance, 2021, 30, 6068.
18 Liu J L, Chen Z H, Huang H Y, et al.Materials Science and Engineering A, 2017, 696, 315.
19 Ostovari Moghaddam A, Mazinani A, Ketabchi M.Transactions of the Indian Institute of Metals, 2017, 70, 1901.
20 Jiao Z X, Wang Q Z, Yin F X, et al.Materials Science and Engineering A, 2020, 772, 138773.
21 Bala Narasimha G, Murigendrappa S M.Journal of Alloys and Compounds, 2020, 823, 153733.
22 Jiang S Y, Zhang Y Q, Zhao Y N.Transactions of Nonferrous Metals Society of China, 2013, 23(1), 140.
23 Qian Y P, Liu F S, Li Y, et al.Acta Aeronautica et Astronautica Sinica, 2006, 27(2), 336 (in Chinese).
钱艳萍, 刘福顺, 李岩, 等. 航空学报, 2006, 27(2), 336.
24 Gang J W, Shi B Q, Chen R S, et al.Acta Metallurgica Sinica, 2012, 48(5), 526 (in Chinese).
刚建伟, 施斌卿, 陈荣石, 等. 金属学报, 2012, 48(5), 526.
25 Ma C H, Ma X L, Pei X, et al.Materials Today Communications, 2023, 37, 107469.
26 Cai Y, Sun H T, Cai Q S, et al.Materials Science and Engineering A, 2024, 901, 146555.
27 Sarı U, Kırındı T.Materials Characterization, 2008, 59(7), 920.
28 Feng D.Physics, Volume 3:physical properties of metals, Science Press, China, 1999, pp. 394 (in Chinese).
冯端. 金属物理学 第三卷 金属力学性质, 科学出版社, 1999, pp. 394.
29 Yang L, Jiang X S, Sun H L, et al.Journal of Materials Research and Technology, 2021, 15, 3825.
30 Ban Y J, Zhang Y, Jia Y L, et al.Materials & Design, 2020, 191, 108613.
31 Geng Y F, Li X, Zhou H L, et al.Journal of Alloys and Compounds, 2020, 821, 153518.
32 Saud S N, AbuBakar T A, Hamzah E, et al.Metallurgical and Materials Transactions A, 2015, 46, 3528.
33 Mallik U S, Sampath V.Journal of Alloys and Compounds, 2008, 459(1), 142.
34 Moghaddam A O, Ketabchi M, Bahrami R.Transactions of Nonferrous Metals Society of China, 2013, 23(10), 2896.
35 Montecinos S, Cuniberti A, Sepúlveda A.Materials Characterization, 2008, 59(2), 117.
36 Guo R Q, Wang X Q, Liu G H, et al.Materials Reports, 2022, 36(Z1), 22010111 (in Chinese).
郭瑞琪, 王秀琦, 刘国怀, 等. 材料导报, 2022, 36(Z1), 22010111.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed