Effect of Boron Addition and Hot Rolling on Microstructure and Mechanical Properties of CuAlNi Alloy
YANG Yuanxia1, HAO Gangling1,*, QIAN Jiaxiang1, WANG Xingfu2, XU Qiaoping1, WANG Weiguo1
1 College of Physics and Electronic Information, Yan’an University, Yan’an 716000, Shaanxi, China 2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract: CuAlNi shape memory alloys have widely targeted requirements in quite numbers of fields due to their excellent functional properties. However coarse grain size can lead to brittle intergranular fracture that significantly weaken mechanical strength. This study was concentrated on the response law of mechanical properties and microstructure evolution of Cu-12Al-4Ni alloy toward boron addition and hot rolling. The microstructure was tailored by incorporating trace amounts of B element addition and combining with hot rolling process. The results indicated that the grain refinement was due to the growth restriction of B element and the heterogeneous nucleation of AlB2. After hot rolling deformation treatment, the grain refinement was further refined by grain crushing and annealing recrystallization, and the degree of refinement increased with the increase of the shape variable. The tensile fracture strength of the alloy drastically increased owing to the B element addition and hot rolling. Specifically, with a B content of 0.2%, the tensile strength of the alloy increased from 391.8 MPa to 562.9 MPa, and further rising to 904.0 MPa upon hot-rolled to 80% deformation. The mechanical properties enhancement of the alloy originated from the synergistic effect of fine grain strengthening, precipitation strengthening and deformation strengthening. Under the same pre-strain conditions, the shape memory effect of the alloy decreased to a certain extent after B addition and hot rolling deformation, which could be related to the formation of precipitated phase and the defects introduction by rolling. The physical mechanism of the improvement of mechanical properties and the attenuation of shape memory effect was also systematically discussed from the perspective of microstructure evolution.
杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
YANG Yuanxia, HAO Gangling, QIAN Jiaxiang, WANG Xingfu, XU Qiaoping, WANG Weiguo. Effect of Boron Addition and Hot Rolling on Microstructure and Mechanical Properties of CuAlNi Alloy. Materials Reports, 2025, 39(13): 24070166-7.
1 Zhang Y K, Xu L Y, Zhao L, et al.Journal of Materials Science & Technology, 2023, 152, 1. 2 Saud S N, Hamzah E, Abubakar T, et al.Jurnal Teknologi, 2013, 64(1), 51. 3 Wang Q Z, Yao C, Lu D M, et al.Materials Letters, 2023, 330, 133392. 4 Yang L, Jiang X S, Sun H L, et al.Nanotechnology Reviews, 2021, 10(1), 1560. 5 Su Y L, Luo B H, Bai Z H, et al.Materials Reports, 2021, 35(20), 20137 (in Chinese). 苏粤兰, 罗兵辉, 柏振海, 等. 材料导报, 2021, 35(20), 20137. 6 Ren C X, Wang Q, Hou J P, et al.Materials Science and Engineering A, 2020, 786, 139441. 7 Xu Y Z, Wang X K, Chang L H, et al.Materials Reports, 2022, 36(23), 21030294 (in Chinese). 徐英卓, 王秀凯, 常麟晖, 等. 材料导报, 2022, 36(23), 21030294. 8 Ding Y J, Wang Q Z, Yin F X, et al.Materials Science and Engineering A, 2019, 743, 606. 9 Vajpai S K, Dube R K, Sangal S.Materials Science and Engineering A, 2013, 570, 32. 10 Dalvand P, Raygan S, López G A, et al.Materials Research Express, 2019, 6(11), 116512. 11 Lee J S, Wayman C M.Transactions of the Japan Institute of Metals, 1986, 27(8), 584. 12 Zhang X, Liu Q S.Intermetallics, 2018, 92, 108. 13 Svirid A E, Kuranova N N, Makarov V V, et al.Physics of Metals and Metallography, 2023, 124, 504. 14 Zhang X, Cui B, Sun B, et al.Acta Metallurgica Sinica, 2022, 58(8), 1065 (in Chinese) 张鑫, 崔博, 孙斌, 等. 金属学报, 2022, 58(8), 1065. 15 Zhang X, Sui J H, Liu Q S, et al.Materials Letters, 2016, 180, 223. 16 Svirid A E, Afanasiev S V, Davydov D I, et al.Metals, 2023, 13, 967. 17 Kalinga T, Murigendrappa S M, Kattimani S.Journal of Materials Engineering and Performance, 2021, 30, 6068. 18 Liu J L, Chen Z H, Huang H Y, et al.Materials Science and Engineering A, 2017, 696, 315. 19 Ostovari Moghaddam A, Mazinani A, Ketabchi M.Transactions of the Indian Institute of Metals, 2017, 70, 1901. 20 Jiao Z X, Wang Q Z, Yin F X, et al.Materials Science and Engineering A, 2020, 772, 138773. 21 Bala Narasimha G, Murigendrappa S M.Journal of Alloys and Compounds, 2020, 823, 153733. 22 Jiang S Y, Zhang Y Q, Zhao Y N.Transactions of Nonferrous Metals Society of China, 2013, 23(1), 140. 23 Qian Y P, Liu F S, Li Y, et al.Acta Aeronautica et Astronautica Sinica, 2006, 27(2), 336 (in Chinese). 钱艳萍, 刘福顺, 李岩, 等. 航空学报, 2006, 27(2), 336. 24 Gang J W, Shi B Q, Chen R S, et al.Acta Metallurgica Sinica, 2012, 48(5), 526 (in Chinese). 刚建伟, 施斌卿, 陈荣石, 等. 金属学报, 2012, 48(5), 526. 25 Ma C H, Ma X L, Pei X, et al.Materials Today Communications, 2023, 37, 107469. 26 Cai Y, Sun H T, Cai Q S, et al.Materials Science and Engineering A, 2024, 901, 146555. 27 Sarı U, Kırındı T.Materials Characterization, 2008, 59(7), 920. 28 Feng D.Physics, Volume 3:physical properties of metals, Science Press, China, 1999, pp. 394 (in Chinese). 冯端. 金属物理学 第三卷 金属力学性质, 科学出版社, 1999, pp. 394. 29 Yang L, Jiang X S, Sun H L, et al.Journal of Materials Research and Technology, 2021, 15, 3825. 30 Ban Y J, Zhang Y, Jia Y L, et al.Materials & Design, 2020, 191, 108613. 31 Geng Y F, Li X, Zhou H L, et al.Journal of Alloys and Compounds, 2020, 821, 153518. 32 Saud S N, AbuBakar T A, Hamzah E, et al.Metallurgical and Materials Transactions A, 2015, 46, 3528. 33 Mallik U S, Sampath V.Journal of Alloys and Compounds, 2008, 459(1), 142. 34 Moghaddam A O, Ketabchi M, Bahrami R.Transactions of Nonferrous Metals Society of China, 2013, 23(10), 2896. 35 Montecinos S, Cuniberti A, Sepúlveda A.Materials Characterization, 2008, 59(2), 117. 36 Guo R Q, Wang X Q, Liu G H, et al.Materials Reports, 2022, 36(Z1), 22010111 (in Chinese). 郭瑞琪, 王秀琦, 刘国怀, 等. 材料导报, 2022, 36(Z1), 22010111.