Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050241-8    https://doi.org/10.11896/cldb.24050241
  无机非金属及其复合材料 |
青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构
张永成1, 曹锋1,*, 郑明杰2, 李双营1, 欧阳浩1
1 青海民族大学土木与交通工程学院,西宁 810000
2 上海赛扬建筑东京事务所,日本 东京 104-0033
Resistance to Salt Brine Corrosion and Microstructure of Magnesium Oxychloride Cement Modified with Highland Barley Straw Ash
ZHANG Yongcheng1, CAO Feng1,*, ZHENG Mingjie2, LI Shuangying1, OUYANG Hao1
1 School of Civil and Transportation Engineering, Qinghai Minzu University, Xining 810000, China
2 Shanghai Saiyang Architecture Tokyo Office, Tokyo 104-0033, Japan
下载:  全 文 ( PDF ) ( 52771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究青稞秸秆灰(HBSA)改性氯氧镁水泥(MOC)的抗盐卤侵蚀性能,对不同HBSA掺量的MOC砂浆(MOCM)进行盐卤浸泡试验,采用抗盐卤侵蚀性能评价指标对盐卤侵蚀环境下HBSA改性MOCM的物理力学性能变化规律进行表征。通过表观形貌分析、细观孔隙结构测试与微观结构表征,从多尺度揭示HBSA影响MOCM抗盐卤侵蚀性能的内在机理。研究结果表明,掺10%HBSA(质量分数,如无特别说明,下同)的MOCM的抗盐卤侵蚀性能显著提升,比未掺HBSA时提高了21.24%;受盐卤侵蚀后,相比未掺HBSA的砂浆,其开口孔隙率降低了4.26%,无害孔和少害孔占比增加,有害孔和多害孔占比减小,最可几孔径减小,孔隙结构更为细化。细微观结构显示,掺10%HBSA的MOCM的水化产物中产生了M-S-H凝胶,填充在5相晶体之间,提高了5相晶体在盐卤侵蚀环境中的稳定性,并且增加了微观结构的致密性,从而提高了MOCM的抗盐卤侵蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永成
曹锋
郑明杰
李双营
欧阳浩
关键词:  青稞秸秆灰  氯氧镁水泥  抗盐卤侵蚀性能  表观形貌  孔隙结构  微观结构    
Abstract: In order to investigate the resistance of magnesium oxychloride cement (MOC) modified with highland barley straw ash (HBSA), salt brine immersion tests were performed on MOC mortars (MOCM) with different contents of HBSA. The evaluation indicators of salt brine erosion resistance were utilized to characterize the physical and mechanical properties changes of HBSA-modified MOCM under salt brine erosion environment. Through multiscale analysis such as analyzing the apparent morphology, testing the microscopic pore structure, and characterizing the microstructure, the intrinsic reasons of HBSA affecting the salt brine corrosion resistance of MOCM are revealed. The research results show that, contrasting with ordinary MOCM, the salt brine corrosion resistance of MOCM with 10% HBSA significantly increases, which is 21.24% higher than that without HBSA. After salt brine erosion, the open porosity decreases by 4.26%, and the proportion of harmless and less harmful pores increase, while the proportion of harmful and more harmful pores decrease. The most probable pore size diminishes, and the pore structure becomes more refined. The M-S-H gel is generated in hydration product of MOCM with 10% HBSA, which fills up between the five-phase crystals, increasing the compactness of the microstructure and promoting the stability of the five-phase crystals in salt brine erosion environment, thereby enhancing the salt brine erosion resistance of the MOCM.
Key words:  highland barley straw ash    magnesium oxychloride cement    salt brine erosion resistance    apparent morphology    pore structure    microstructure
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU528  
基金资助: 教育部春晖计划自主合作研究基金项目(HZKY20220452);青海省重点研发与转化计划(2022-QY-222)
通讯作者:  *曹锋,博士,青海民族大学土木与交通工程学院副教授、土木水利专业学位管理中心主任、硕士研究生导师。目前主要从事氯氧镁水泥性能调控与设计、严酷环境混凝土结构耐久性等方面的研究工作。286840511@qq.com   
作者简介:  张永成,青海民族大学土木与交通工程学院硕士研究生,在曹锋副教授的指导下进行研究。目前主要研究领域为土木工程材料。
引用本文:    
张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
ZHANG Yongcheng, CAO Feng, ZHENG Mingjie, LI Shuangying, OUYANG Hao. Resistance to Salt Brine Corrosion and Microstructure of Magnesium Oxychloride Cement Modified with Highland Barley Straw Ash. Materials Reports, 2025, 39(13): 24050241-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050241  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050241
1 Avanish S, Rakesh K, Pankaj G, et al.Construction and Building Materials, 2021, 303, 124571.
2 Guo Y Y, Zhang Y X, Soe K, et al.Cement and Concrete Composites, 2022, 129, 104472.
3 Xiao X Y, Zheng W X, Huang Q, et al.Journal of Salt Lake Research, 2018, 26(3), 7(in Chinese).
肖学英, 郑卫新, 黄青, 等. 盐湖研究, 2018, 26(3), 7.
4 Huang Q. Research on the salt attack performance of magnesium oxychloride cement. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2021 (in Chinese).
黄青. 氯氧镁水泥的抗盐卤腐蚀性能研究. 博士学位论文, 中国科学院大学, 2021.
5 Huang Q, Zheng W X, Xiao X Y, et al.Construction and Building Materials, 2022, 320, 126224.
6 Huang Q, Wen J, Li Y, et al.Ceramics Silikáty, 2019, 63(3), 338.
7 Jiříčková A, Lauermannová A M, Jankovský O, et al.Journal of Buil-ding Engineering, 2024, 87, 108981.
8 Yang A. Research on the durability of magnesium oxychloride cement concrete under the coupling effect of carbonation and salt solution. Master’s Thesis, Lanzhou University of Technology, China, 2024(in Chinese).
杨安. 碳化与盐溶液耦合作用下氯氧镁水泥混凝土耐久性研究. 硕士学位论文, 兰州理工大学, 2024.
9 Cao F, Qiao H X, Li Y K, et al.Construction and Building Materials, 2022, 315, 125802.
10 Shu X Y, Qiao H X, Cao F, et al.Materials Reports, 2023, 37 (23), 88 (in Chinese).
舒修远, 乔宏霞, 曹锋, 等. 材料导报, 2023, 37(23), 88.
11 Cao F, Qiao H X, Li Y K, et al.Journal of Materials in Civil Engineering, 2022, 34(10), 04022259.
12 Cao F, Qiao H X, Shu X Y, et al.Journal of Building Engineering, 2022, 59, 105108.
13 Ministry of Housing and Urban-Rural Development.Natural pozzolanic materials used for cement mortar and concrete:JG/T 315-2011, Standards Press of China, China, 2011 (in Chinese).
中华人民共和国住房和城乡建设部. 水泥砂浆和混凝土用天然火山灰质材料:JG/T 315-2011, 中国标准出版社, 2011.
14 Cao F, Qiao H X, Li S Y, et al.Journal of Composite Materials, 2023, 40(5), 2972 (in Chinese).
曹锋, 乔宏霞, 李双营, 等. 复合材料学报, 2023, 40(5), 2972.
15 Wang Y, Yuan Q, Deng D H, et al.Construction and Building Materials, 2017, 137, 450.
16 Valori A, Mcdonald P J, Scrivener K L, et al.Cement and Concrete Research, 2013, 49, 65.
17 Zhang J Z, Bian F, Zhang Y R, et al.Construction and Building Materials, 2018, 163, 402.
18 Wang Y, Yuan Q, Deng D H, et al.Construction and Building Materials, 2017, 137, 450.
19 Mantellato S, Palacions M, Flatt R J, et al.Cement and Concrete Research, 2015, 67, 286.
20 Pang Y, Wang S, Yao X Y, et al.Langmuir, 2022, 38, 3641.
21 Bernard E, Lothenbach B, Chlique C, et al.Cement and Concrete Research, 2019, 116, 309.
22 Wang J, Liu M, Wang Y, et al.Construction and Building Materials, 2020, 262, 120737.
23 Guo Y Y, Zhang Y X, Soe K, et al.Structural Concrete, 2020, 21 (3), 1181.
24 Bernard E, Lothenbach B, Chlique C, et al.Cement and Concrete Research, 2019, 116, 309.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[3] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[4] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[5] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[6] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[7] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[8] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[9] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[10] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[11] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[12] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[13] 肖海, 王光辉, 张伦, 张文琪, 丁瑜, 夏振尧. 棕榈纤维强化EICP加固三峡库区黏性紫色土抗剪性能试验研究[J]. 材料导报, 2025, 39(11): 24040113-6.
[14] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[15] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed