Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24020100-9    https://doi.org/10.11896/cldb.24020100
  无机非金属及其复合材料 |
利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷
聂光临1,2,*, 刘磊仁3, 刘一军1,2,*, 左飞3, 汪庆刚1,2, 吴洋1,2, 黄玲艳1,2, 包亦望4
1 蒙娜丽莎集团股份有限公司,广东 佛山 528211
2 广东省大尺寸陶瓷薄板企业重点实验室,广东 佛山 528211
3 广东工业大学机电工程学院,广州 510006
4 中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室,北京 100024
Preparation of the ZTA Ceramic with High Strength & Toughness and Thermal Conductivity via Dispersive Characteristic Optimization of t-ZrO2
NIE Guanglin1,2,*, LIU Leiren3, LIU Yijun1,2,*, ZUO Fei3, WANG Qinggang1,2, WU Yang1,2, HUANG Lingyan1,2, BAO Yiwang4
1 Monalisa Group Co., Ltd., Foshan 528211, Guangdong, China
2 Guangdong Provincial Key Laboratory of Large Ceramic Plates, Foshan 528211, Guangdong, China
3 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
4 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 22847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 力学与热学性能的同步提升有利于增强氧化锆增韧氧化铝(ZTA)陶瓷基板的服役安全性与可靠性。本工作利用非水基沉淀包覆工艺(CP)提升t-ZrO2在ZTA陶瓷中的分散均匀性,探究了t-ZrO2分散特性对ZTA陶瓷微观结构、物相组成、残余应力分布、断面三维形貌、力学与热学性能的影响规律。结果表明:t-ZrO2分散特性的优化有利于细化和均匀化ZTA陶瓷的微观结构、增大Al2O3晶界的残余压应力、增强t-ZrO2颗粒的相变活性、延长裂纹扩展路径。基于此,可实现细晶强化、相变强化、残余应力强化以及裂纹偏转增韧的协同作用,继而可大幅度提升ZTA陶瓷的强韧性与可靠性。而且,t-ZrO2分散特性的优化可促进孤立t-ZrO2相的形成,有利于弱化细晶及低导热第二相对ZTA陶瓷热导率的劣化作用,继而提升了ZTA陶瓷的热导率。同时,利用CP工艺成功制得力学-热学综合性能优异的ZTA陶瓷,其弯曲强度、断裂韧性、热导率、Weibull模量分别可达(669.11±42.35) MPa、(7.02±0.38) MPa·m1/2、(29.81±0.28) W·m-1·K-1、18.62,表明t-ZrO2分散特性的优化对制备高强韧高可靠性高导热ZTA陶瓷至关重要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂光临
刘磊仁
刘一军
左飞
汪庆刚
吴洋
黄玲艳
包亦望
关键词:  氧化锆增韧氧化铝陶瓷  分散均匀性  微观结构  强韧化  弯曲强度  断裂韧性  热导率    
Abstract: The simultaneous enhancement of mechanical and thermal properties is conductive to the service safety and reliability of zirconia toughened alumina (ZTA) ceramic substrates. In this work, a non-aqueous precipitation coating process (CP) was employed to enhance the dispersive uniformity of t-ZrO2 in ZTA ceramics. Then the effects of the dispersive characteristic of t-ZrO2 on the microstructure, phase composition, residual stress distribution, three-dimensional profile of fracture surface, mechanical and thermal properties of ZTA ceramic were investigated. The results show that the dispersive characteristic optimization of t-ZrO2 contributes positivity to uniforming and refining the microstructure of ZTA ceramic, increasing the residual compressive stress at Al2O3 grain boundary, enhancing the phase transformability of t-ZrO2 particles and prolonging the crack propagation path. Consequently, the synergistic actions of grain refinement strengthening, phase transformation strengthening, residual stress strengthening and crack deflection toughening can be achieved, which are responsible for enhancing the bending strength, fracture toughness and reliability of ZTA ceramics. Moreover, the dispersive characteristic optimization of t-ZrO2 can promote the formation of isolated second t-ZrO2 phase, which is beneficial for weakening the deterioration effects of fine grains and second phase to degrade thermally conductive property on the thermal conductivity of ZTA ceramic, and thereby improving the thermal conductivity of ZTA ceramic. Finally, the ZTA ceramic with excellent comprehensive mechanical and thermal properties were successfully prepared using the CP method, and it’s bending strength, fracture toughness, thermal conductivity and Weibull modulus reaches (669.11±42.35) MPa, (7.02±0.38) MPa·m1/2, (29.81±0.28) W·m-1·K-1 and 18.62, respectively, demonstrating that the dispersive characteristic optimization of t-ZrO2 is crucial for the fabricating ZTA ceramics with high mechanical strength, toughness, reliability and thermal conductivity.
Key words:  zirconia toughened alumina ceramic    dispersive uniformity    microstructure    strengthening-toughening    bending strength    fracture toughness    thermal conductivity
发布日期:  2025-05-29
ZTFLH:  TQ174  
基金资助: 广东省基础与应用基础研究基金(2023A1515012676;2023A1515030136);广东省科技计划项目(2022B1212020001);2024年粤港澳大湾区(佛山)先进制造业国家卓越工程师创新研究院“揭榜挂帅”项目(JBGS2024006)
通讯作者:  *聂光临, , 博士, 高级工程师,硕士研究生导师。主要从事陶瓷材料强韧化与深加工技术的研究。buildingmaterials8@163.com
刘一军,博士,教授级高级工程师、博士研究生导师。主要从事建筑陶瓷基础理论与应用技术研究。235036388@qq.com   
引用本文:    
聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
NIE Guanglin, LIU Leiren, LIU Yijun, ZUO Fei, WANG Qinggang, WU Yang, HUANG Lingyan, BAO Yiwang. Preparation of the ZTA Ceramic with High Strength & Toughness and Thermal Conductivity via Dispersive Characteristic Optimization of t-ZrO2. Materials Reports, 2025, 39(11): 24020100-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020100  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24020100
1 Liu L R, Nie G L, Huang D W, et al. Journal of Ceramics, 2021, 42(6), 1026 (in Chinese).
刘磊仁, 聂光临, 黄丹武, 等. 陶瓷学报, 2021, 42(6), 1026.
2 Gu X Y, Wu S L, Zhang A H, et al. Key Engineering Materials, 2012, 512, 500.
3 Zeng X L, Sun R, Yu S H, et al. Journal of Integration Technology, 2014, 3(6), 76 (in Chinese).
曾小亮, 孙蓉, 于淑会, 等. 集成技术, 2014, 3(6), 76.
4 Xu L, Wang M C, Zhou Y, et al. Microelectronics Reliability, 2016, 56, 101.
5 Sommer F, Landfried R, Kern F, et al. Journal of the European Ceramic Society, 2012, 32, 4177.
6 Seong W K, Ahn B M, Min Y, et al. Ceramics International, 2020, 46, 23820.
7 Hostaša J, Pabst W, Matějíek J. Journal of the American Ceramic Society, 2011, 94(12), 4404.
8 Nie G, Li Y, Sheng P, et al. Journal of Advanced Ceramics, 2021, 10(4), 790.
9 Yu Q H. Preparation of ZTA composites by nanotechnology. Master’s Thesis, Jinan University, China, 2005 (in Chinese).
余庆华. 纳米技术制备ZTA复合陶瓷材料的研究. 硕士学位论文, 济南大学, 2005.
10 Lange F F, Hirlinger M M. Journal of the American Ceramic Society, 1984, 67(3), 164.
11 Michálek M, Kašiarová M, Michálková M, et al. Journal of the European Ceramic Society, 2014, 34(14), 3329.
12 Seong W K, Ahn B M, Min Y, et al. Materials Science and Engineering A, 2020, 784, 139328.
13 Wang J, Stevens R. Journal of Materials Science, 1989, 24, 3421.
14 Casellas D, Nagl M M, Llanes L, et al. Journal of Materials Processing Technology, 2003, 143, 148.
15 Liu G W. Manipulating composition and properties of ceramics via solution precursor infiltration technique. Ph. D. Thesis, Tsinghua University, China, 2012 (in Chinese).
刘冠伟. 基于溶液前驱体浸渗调控陶瓷组成和性能的研究. 博士学位论文, 清华大学, 2012.
16 Nie G L, Li Y H, Sheng P F, et al. Ceramics International, 2020, 46(13), 21156.
17 Nie G L, Sheng P F, Li Y H, et al. International Journal of Applied Ceramic Technology, 2021, 18, 1255.
18 Nie G L, Liu L R, Liu Y J, et al. Journal of Ceramics, 2023, 44(3), 500 (in Chinese).
聂光临, 刘磊仁, 刘一军, 等. 陶瓷学报, 2023, 44(3), 500.
19 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for flexural strength of monolithic ceramics at room temperature:GB/T 6569-2006, Standards Press of China, China, 2006 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 精细陶瓷弯曲强度试验方法 :GB/T 6569-2006. 中国标准出版社, 2006.
20 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, , Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method:GB/T23806-2009, Standards Press of China, China, 2009 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 精细陶瓷断裂韧性试验方法-单边预裂纹梁(SEPB)法GB/T 23806-2009, 中国标准出版社, 2009.
21 International Organization for Standardization, Fine ceramics (advanced ceramics, advanced technical ceramics)-Weibull statistics for strength data:ISO 20501:2019(E), Switzerland, 2019.
22 International Organization for Standardization. Fine ceramics (advanced ceramics, advanced technical ceramics)-Test method for hardness of monolithic ceramics at room temperature:ISO 14705:2016(E). Switzerland, 2016.
23 Niihara K, Morena R, Hasselman D P H. Journal of Materials Science Letters, 1982, 1, 13.
24 Tang D, Lim H B, Lee K J, et al. Ceramics International, 2012, 38, 2429.
25 ASTM International. Standard test method for thermal diffusivity by the flash method:ASTM E1461-13. United States, 2013.
26 Hostaša J, Pabst W, Matějíek J. Journal of the American Ceramic Society, 2011, 94(12), 4404.
27 Leitner J, Voňka P, Sedmidubský D, et al. Thermochimica Acta, 2010, 497, 7.
28 Toraya H, Yoshimura M, Somiya S. Journal of the American Ceramic Society, 1984, 67, C-119.
29 Reyes-Rojas A, Esparza-Ponce H, De la Torre S D, et al. Materials Chemistry and Physics, 2009, 114, 756.
30 Eshtiagh-Hosseini H, Housaindokht M R, Chahkandi M. Materials Chemistry and Physics, 2007, 106, 310.
31 Mallick B, Behera R C, Patel T. Bulletin of Materials Science, 2005, 28(6), 593.
32 Levin I, Kaplan W D, Brandon D G, et al. Acta Metallurgica et Materialia, 1994, 42(4), 1147.
33 Chen G, Wan J, He N, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 2395.
34 Lin K J, Nie G L, Sheng P F, et al. Ceramics International, 2022, 48, 36210.
35 Pittari J, Subhash G, Zheng J, et al. Journal of the European Ceramic Society, 2015, 35(16), 4411.
36 Kim C H, Go E B, Kim H T. Heat Transfer Engineering, 2020, 41, 1354.
37 Blendell J E, Coble R L. Journal of the American Ceramic Society, 1982, 65, 174.
38 Negahdari Z, Willert-Porada M, Scherm F. Journal of the European Ceramic Society, 2010, 30, 3103.
39 Smith D S, Fayette S, Grandjean S, et al. Journal of the American Ceramic Society, 2003, 86, 105.
40 Kultayeva S, Ha J H, Malik R, et al. Journal of the European Ceramic Society, 2020, 40, 996.
41 Bao Y W, Liu C C, Huang J L. Materials Science and Engineering A, 2006, 434, 250.
42 Chen J, Xie Z, Zeng W, et al. Ceramics International, 2017, 43, 3970.
43 Bao Y W, Jin Z Z. Fatigue and Fracture of Engineering Materials and Structure, 1993, 16 (8), 829.
44 Kern F, Gadow R. Journal of the European Ceramic Society, 2012, 32(15), 3911.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[7] 肖海, 王光辉, 张伦, 张文琪, 丁瑜, 夏振尧. 棕榈纤维强化EICP加固三峡库区黏性紫色土抗剪性能试验研究[J]. 材料导报, 2025, 39(11): 24040113-6.
[8] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[9] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[10] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[11] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[12] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[15] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed