Preparation of the ZTA Ceramic with High Strength & Toughness and Thermal Conductivity via Dispersive Characteristic Optimization of t-ZrO2
NIE Guanglin1,2,*, LIU Leiren3, LIU Yijun1,2,*, ZUO Fei3, WANG Qinggang1,2, WU Yang1,2, HUANG Lingyan1,2, BAO Yiwang4
1 Monalisa Group Co., Ltd., Foshan 528211, Guangdong, China 2 Guangdong Provincial Key Laboratory of Large Ceramic Plates, Foshan 528211, Guangdong, China 3 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China 4 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
Abstract: The simultaneous enhancement of mechanical and thermal properties is conductive to the service safety and reliability of zirconia toughened alumina (ZTA) ceramic substrates. In this work, a non-aqueous precipitation coating process (CP) was employed to enhance the dispersive uniformity of t-ZrO2 in ZTA ceramics. Then the effects of the dispersive characteristic of t-ZrO2 on the microstructure, phase composition, residual stress distribution, three-dimensional profile of fracture surface, mechanical and thermal properties of ZTA ceramic were investigated. The results show that the dispersive characteristic optimization of t-ZrO2 contributes positivity to uniforming and refining the microstructure of ZTA ceramic, increasing the residual compressive stress at Al2O3 grain boundary, enhancing the phase transformability of t-ZrO2 particles and prolonging the crack propagation path. Consequently, the synergistic actions of grain refinement strengthening, phase transformation strengthening, residual stress strengthening and crack deflection toughening can be achieved, which are responsible for enhancing the bending strength, fracture toughness and reliability of ZTA ceramics. Moreover, the dispersive characteristic optimization of t-ZrO2 can promote the formation of isolated second t-ZrO2 phase, which is beneficial for weakening the deterioration effects of fine grains and second phase to degrade thermally conductive property on the thermal conductivity of ZTA ceramic, and thereby improving the thermal conductivity of ZTA ceramic. Finally, the ZTA ceramic with excellent comprehensive mechanical and thermal properties were successfully prepared using the CP method, and it’s bending strength, fracture toughness, thermal conductivity and Weibull modulus reaches (669.11±42.35) MPa, (7.02±0.38) MPa·m1/2, (29.81±0.28) W·m-1·K-1 and 18.62, respectively, demonstrating that the dispersive characteristic optimization of t-ZrO2 is crucial for the fabricating ZTA ceramics with high mechanical strength, toughness, reliability and thermal conductivity.
聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
NIE Guanglin, LIU Leiren, LIU Yijun, ZUO Fei, WANG Qinggang, WU Yang, HUANG Lingyan, BAO Yiwang. Preparation of the ZTA Ceramic with High Strength & Toughness and Thermal Conductivity via Dispersive Characteristic Optimization of t-ZrO2. Materials Reports, 2025, 39(11): 24020100-9.
1 Liu L R, Nie G L, Huang D W, et al. Journal of Ceramics, 2021, 42(6), 1026 (in Chinese). 刘磊仁, 聂光临, 黄丹武, 等. 陶瓷学报, 2021, 42(6), 1026. 2 Gu X Y, Wu S L, Zhang A H, et al. Key Engineering Materials, 2012, 512, 500. 3 Zeng X L, Sun R, Yu S H, et al. Journal of Integration Technology, 2014, 3(6), 76 (in Chinese). 曾小亮, 孙蓉, 于淑会, 等. 集成技术, 2014, 3(6), 76. 4 Xu L, Wang M C, Zhou Y, et al. Microelectronics Reliability, 2016, 56, 101. 5 Sommer F, Landfried R, Kern F, et al. Journal of the European Ceramic Society, 2012, 32, 4177. 6 Seong W K, Ahn B M, Min Y, et al. Ceramics International, 2020, 46, 23820. 7 Hostaša J, Pabst W, Matějíek J. Journal of the American Ceramic Society, 2011, 94(12), 4404. 8 Nie G, Li Y, Sheng P, et al. Journal of Advanced Ceramics, 2021, 10(4), 790. 9 Yu Q H. Preparation of ZTA composites by nanotechnology. Master’s Thesis, Jinan University, China, 2005 (in Chinese). 余庆华. 纳米技术制备ZTA复合陶瓷材料的研究. 硕士学位论文, 济南大学, 2005. 10 Lange F F, Hirlinger M M. Journal of the American Ceramic Society, 1984, 67(3), 164. 11 Michálek M, Kašiarová M, Michálková M, et al. Journal of the European Ceramic Society, 2014, 34(14), 3329. 12 Seong W K, Ahn B M, Min Y, et al. Materials Science and Engineering A, 2020, 784, 139328. 13 Wang J, Stevens R. Journal of Materials Science, 1989, 24, 3421. 14 Casellas D, Nagl M M, Llanes L, et al. Journal of Materials Processing Technology, 2003, 143, 148. 15 Liu G W. Manipulating composition and properties of ceramics via solution precursor infiltration technique. Ph. D. Thesis, Tsinghua University, China, 2012 (in Chinese). 刘冠伟. 基于溶液前驱体浸渗调控陶瓷组成和性能的研究. 博士学位论文, 清华大学, 2012. 16 Nie G L, Li Y H, Sheng P F, et al. Ceramics International, 2020, 46(13), 21156. 17 Nie G L, Sheng P F, Li Y H, et al. International Journal of Applied Ceramic Technology, 2021, 18, 1255. 18 Nie G L, Liu L R, Liu Y J, et al. Journal of Ceramics, 2023, 44(3), 500 (in Chinese). 聂光临, 刘磊仁, 刘一军, 等. 陶瓷学报, 2023, 44(3), 500. 19 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for flexural strength of monolithic ceramics at room temperature:GB/T 6569-2006, Standards Press of China, China, 2006 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. 精细陶瓷弯曲强度试验方法 :GB/T 6569-2006. 中国标准出版社, 2006. 20 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, , Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method:GB/T23806-2009, Standards Press of China, China, 2009 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. 精细陶瓷断裂韧性试验方法-单边预裂纹梁(SEPB)法GB/T 23806-2009, 中国标准出版社, 2009. 21 International Organization for Standardization, Fine ceramics (advanced ceramics, advanced technical ceramics)-Weibull statistics for strength data:ISO 20501:2019(E), Switzerland, 2019. 22 International Organization for Standardization. Fine ceramics (advanced ceramics, advanced technical ceramics)-Test method for hardness of monolithic ceramics at room temperature:ISO 14705:2016(E). Switzerland, 2016. 23 Niihara K, Morena R, Hasselman D P H. Journal of Materials Science Letters, 1982, 1, 13. 24 Tang D, Lim H B, Lee K J, et al. Ceramics International, 2012, 38, 2429. 25 ASTM International. Standard test method for thermal diffusivity by the flash method:ASTM E1461-13. United States, 2013. 26 Hostaša J, Pabst W, Matějíek J. Journal of the American Ceramic Society, 2011, 94(12), 4404. 27 Leitner J, Voňka P, Sedmidubský D, et al. Thermochimica Acta, 2010, 497, 7. 28 Toraya H, Yoshimura M, Somiya S. Journal of the American Ceramic Society, 1984, 67, C-119. 29 Reyes-Rojas A, Esparza-Ponce H, De la Torre S D, et al. Materials Chemistry and Physics, 2009, 114, 756. 30 Eshtiagh-Hosseini H, Housaindokht M R, Chahkandi M. Materials Chemistry and Physics, 2007, 106, 310. 31 Mallick B, Behera R C, Patel T. Bulletin of Materials Science, 2005, 28(6), 593. 32 Levin I, Kaplan W D, Brandon D G, et al. Acta Metallurgica et Materialia, 1994, 42(4), 1147. 33 Chen G, Wan J, He N, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 2395. 34 Lin K J, Nie G L, Sheng P F, et al. Ceramics International, 2022, 48, 36210. 35 Pittari J, Subhash G, Zheng J, et al. Journal of the European Ceramic Society, 2015, 35(16), 4411. 36 Kim C H, Go E B, Kim H T. Heat Transfer Engineering, 2020, 41, 1354. 37 Blendell J E, Coble R L. Journal of the American Ceramic Society, 1982, 65, 174. 38 Negahdari Z, Willert-Porada M, Scherm F. Journal of the European Ceramic Society, 2010, 30, 3103. 39 Smith D S, Fayette S, Grandjean S, et al. Journal of the American Ceramic Society, 2003, 86, 105. 40 Kultayeva S, Ha J H, Malik R, et al. Journal of the European Ceramic Society, 2020, 40, 996. 41 Bao Y W, Liu C C, Huang J L. Materials Science and Engineering A, 2006, 434, 250. 42 Chen J, Xie Z, Zeng W, et al. Ceramics International, 2017, 43, 3970. 43 Bao Y W, Jin Z Z. Fatigue and Fracture of Engineering Materials and Structure, 1993, 16 (8), 829. 44 Kern F, Gadow R. Journal of the European Ceramic Society, 2012, 32(15), 3911.