Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040113-6    https://doi.org/10.11896/cldb.24040113
  无机非金属及其复合材料 |
棕榈纤维强化EICP加固三峡库区黏性紫色土抗剪性能试验研究
肖海1,2,3, 王光辉1,2, 张伦1,2,3, 张文琪1,2, 丁瑜1,2,3, 夏振尧1,2,3,*
1 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
2 三峡大学土木与建筑学院,湖北 宜昌 443002
3 三峡库区生态环境教育部工程研究中心,湖北 宜昌 443002
Experimental Research on the Improvement Effect of Palm Fiber on the Shear Resistance of Cohesive Purple Soil Reinforced by EICP in Three Gorges Reservoir Area
XIAO Hai1,2,3, WANG Guanghui1,2, ZHANG Lun1,2,3, ZHANG Wenqi1,2, DING Yu1,2,3, XIA Zhenyao1,2,3,*
1 Key Laboratory of Geological Hazards on the Three Gorges Reservoir Area, Ministry of Education, Yichang 443002, Hubei, China
2 College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, Hubei, China
3 Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 7812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究棕榈纤维对脲酶诱导碳酸盐沉淀(Enzyme induced carbonate precipitation,EICP)加固黏性土体抗剪性能的影响,本工作以三峡库区紫色土为对象,设置五个纤维掺量(0%、0.1%、0.2%、0.4%和0.8%,质量分数)和五个胶结液浓度(0 mol/L、0.5 mol/L、1.0 mol/L、1.5 mol/L和2.0 mol/L),开展直剪实验,以纯紫色土试样为空白对照(CK),分析各试验条件下紫色土应力-应变曲线、黏聚力、内摩擦角和碳酸钙含量变化特征,阐明棕榈纤维对EICP加固黏性土体力学性能的改善效果,并从微观角度揭示其强化机理。结果表明:相较于CK,纤维添加、EICP和纤维-EICP处理紫色土试样的黏聚力与内摩擦角分别提升1.63~7.54倍、3.39~8.75倍和0.61~18.61倍与0.13~0.27倍、0.12~0.20倍和0.17~0.35倍,总体上黏聚力和内摩擦角随着纤维掺量和胶结液浓度的增加呈现先增加后减小的趋势,且在0.1%~0.2%纤维掺量和1.5 mol/L胶结液浓度下抗剪强度最大。相较于CK处理,EICP和纤维-EICP处理紫色土试样的碳酸钙含量分别提升11.92~21.36倍和6.77~27.39倍,适量的纤维掺入促进碳酸钙生成。纤维掺入在EICP处理试样中形成“纤维-土颗粒-CaCO3”晶体网状结构,不仅提高试样强度,还使试样由脆性破坏向塑性破坏转变。研究结果表明棕榈纤维掺入能够强化EICP处理紫色土抗剪性能,可为三峡库区紫色土绿色加固及三峡库区生态屏障建设提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖海
王光辉
张伦
张文琪
丁瑜
夏振尧
关键词:  脲酶诱导碳酸钙沉淀  棕榈纤维  紫色土  黏聚力  微观结构    
Abstract: In order to investigate the effect of palm fiber on the shear resistance of cohesive soil reinforced by enzyme induced carbonate precipitation (EICP), taking the cohesive purple soil in Three Gorges Reservoir Area as the research object, and 5 palm fiber dosages (0%, 0.1%, 0.2%, 0.4%, and 0.8%, in mass) combined with 5 cementing liquid concentrations (0 mol/L, 0.5 mol/L, 1.0 mol/L, 1.5 mol/L, and 2.0 mol/L) were set to carry out the direct shear test in this research. The purple soil sample without fiber and cementing fluid was used as control check (CK), and the changes in stress-strain curves, cohesion, internal friction angle and calcium carbonate content of purple soil under each experimental condition were analyzed, and the microscopic reinforcement mechanism was revealed by scanning electron microscopy. The results indicated that the cohesion and internal friction angle of the cohesive purple soil treated with fiber addition, EICP and fiber-EICP were increased by 1.63—7.54, 3.39—8.75, 0.61—18.61 times, and by 0.13—0.27, 0.12—0.20, 0.17—0.35 times, respectively, when compared with the CK treatment. Generally, the cohesion and internal friction angle had an increasing trend followed by a reduction with the increase of the fiber dosage and the cementing liquid concentrations, and the largest shear strength was observed at 0.1%—0.2% fiber dosages combined with a cementing liquid concentration of 1.5 mol/L. Compared with the CK treatment, the calcium carbonate content of EICP and fiber-EICP treated purple soil samples were increased by 11.92—21.36 and 6.77—27.39 times, respectively, and the appropriate amount of fiber incorporation promoted the generation of calcium carbonate. The microanalysis indicated that the fiber incorporated in the EICP-treated specimens formed a ‘fiber-soil particles-CaCO3’ crystal mesh structure, which could not only increase the shear strength of the specimens, but also change the damage morphology from brittle failure to plasticity failure. The results show that palm fiber can improve the shear resistance of cohesive purple soil reinforced by EICP, which can provide theoretical basis for environment-friendly biological cohesive purple soil reinforcement and ecological barrier construction in Three Gorges Reservoir Area.
Key words:  enzyme induced carbonate precipitation (EICP)    palm fiber    purple soil    cohesion    microstructure
发布日期:  2025-05-29
ZTFLH:  TU411.7  
基金资助: 国家自然科学基金(52378351;U2040207);“土木工程防灾减灾湖北省引智创新示范基地”(2021EJD026)
通讯作者:  *夏振尧,博士,三峡大学土木与建筑学院教授、博士研究生导师。目前主要从事边坡生态修复、生物岩土等方面的研究。xzy_yc@126.com   
作者简介:  肖海,博士,三峡大学土木与建筑学院教授、博士研究生导师。目前主要从事生物岩土水土治理相关研究工作。
引用本文:    
肖海, 王光辉, 张伦, 张文琪, 丁瑜, 夏振尧. 棕榈纤维强化EICP加固三峡库区黏性紫色土抗剪性能试验研究[J]. 材料导报, 2025, 39(11): 24040113-6.
XIAO Hai, WANG Guanghui, ZHANG Lun, ZHANG Wenqi, DING Yu, XIA Zhenyao. Experimental Research on the Improvement Effect of Palm Fiber on the Shear Resistance of Cohesive Purple Soil Reinforced by EICP in Three Gorges Reservoir Area. Materials Reports, 2025, 39(11): 24040113-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040113  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040113
1 Zhang L, Gao F, Liu D Y, et al. Journal of Hydrology:Regional Studies, 2023, 49, 101510.
2 Guo P, Xia Z Y, Gao F, et al. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19), 105 (in Chinese).
郭萍, 夏振尧, 高峰, 等. 农业工程学报, 2021, 37(19), 105.
3 Shen T Y, Wang S J, Xue L, et al. Rock and Soil Mechanics, 2019, 40(8), 3115 (in Chinese).
沈泰宇, 汪时机, 薛乐, 等. 岩土力学, 2019, 40(8), 3115.
4 Xia H C, Wang S J, Li X, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(S1), 121 (in Chinese).
夏浩城, 汪时机, 李贤, 等. 岩土工程学报, 2022, 44(S1), 121.
5 Li Y, Xu M, Xie Y H, et al. Environmental Science, 2024, 45(2), 974 (in Chinese).
李越, 徐曼, 谢永红, 等. 环境科学, 2024, 45(2), 974.
6 Sun Y, Zhong X, Lv J, et al. Materials, 2023, 16(3), 999.
7 Lemboye K, Almajed A, Hamid W, et al. Innovative Infrastructure Solutions, 2021, 6(3), 167.
8 Sun X, Miao L, Wang H, et al. Science of the Total Environment, 2021, 791, 148369.
9 Arab M G, Omar M, Almajed A, et al. Construction and Building Materials, 2021, 284, 122846.
10 Alarifi S A, Mustafa A, Omarov K, et al. Frontiers in Bioengineering and Biotechnology, 2022, 10, 900881.
11 Iamchaturapatr J, Piriyakul K, Petcherdchoo A. Case Studies in Construction Materials, 2022, 16, e00871.
12 Cui M, Fu X, Zheng J J, et al. Rock and Soil Mechanics, 2022, 43(11), 3027 (in Chinese).
崔猛, 符晓, 郑俊杰, 等. 岩土力学, 2022, 43(11), 3027.
13 Tian W, Li T, Jia N, et al. Materials Reports, 2022, 36(15), 78 (in Chinese).
田威, 李腾, 贾能, 等. 材料导报, 2022, 36(15), 78.
14 Choi S G, Chu J, Kwon T H. Geomechanics and Engineering, 2019, 17(5), 465.
15 Yuan H, Ren G, Liu K, et al. Applied Sciences, 2020, 10(21), 7678.
16 Wu M, Gao Y F, He J, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(10), 1914 (in Chinese).
吴敏, 高玉峰, 何稼, 等. 岩土工程学报, 2020, 42(10), 1914.
17 Fang X, Yang Y, Chen Z, et al. Geomicrobiology Journal, 2020, 37(6), 582.
18 Yuan H, Ren G Z, Liu K, et al. Materials, 2021, 14(11), 2765.
19 Choi S G, Wang K J, Chu J, et al. Construction and Buildinding Materials, 2016, 120:623.
20 Zhang J W, Li X, Han Z G, et al. Acta Materiae Compositae Sinica, 2024, 41(1), 426 (in Chinese).
张建伟, 李想, 韩智光, 等. 复合材料学报, 2024, 41(1), 426.
21 Wang X, Tao J, Bao R, et al. Journal of Materials in Civil Engineering, 2018, 30(10), 04018267.
22 Xie Y H, Tang C S, Yin L Y, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(4), 675 (in Chinese).
谢约翰, 唐朝生, 尹黎阳, 等. 岩土工程学报, 2019, 41(4), 675.
23 Tang H, Li H H, Liu C Y, et al. Science Technology and Engineering, 2020, 20(19), 7832 (in Chinese).
唐皓, 李华华, 刘驰洋, 等. 科学技术与工程, 2020, 20(19), 7832.
24 Lyu Y R, Zhang Y K, Wang Y, et al. Rock and Soil Mechanics, 2023, 44(S1), 277 (in Chinese).
吕亚茹, 张一珂, 王媛, 等. 岩土力学, 2023, 44(S1), 277.
25 Wei L, Chai S X, Zhang L, et al. Rock and Soil Mechanics, 2022, 43(12), 3241 (in Chinese).
魏丽, 柴寿喜, 张琳, 等. 岩土力学, 2022, 43(12), 3241.
26 Qu J L, Li B B, Li C C, et al. Rock and Soil Mechanics, 2014, 35(S2), 142 (in Chinese).
璩继立, 李贝贝, 李陈财, 等. 岩土力学, 2014, 35(S2), 142.
27 Xiao H, Hu H, Lyu G L, et al. Journal of China Three Gorges University(Natural Sciences), 2022, 44(6), 66 (in Chinese).
肖海, 胡欢, 吕广柳, 等. 三峡大学学报(自然科学版), 2022, 44(6), 66.
28 Lade P V. Engineering Geology, 2010, 114(1-2), 57.
29 Zhang J, Wang X J, Shi L. Construction and Building Materials, 2022, 339, 127792.
30 Xiong Y, Deng H F, Peng M, et al. Journal of Yangtze River Scientific Research Institute, 2022, 39(1), 122 (in Chinese).
熊雨, 邓华锋, 彭萌, 等. 长江科学院院报, 2022, 39(1), 122.
31 Ren S S, Zhang Y S, Xu N X, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(8), 1473 (in Chinese).
任三绍, 张永双, 徐能雄, 等. 岩土工程学报, 2021, 43(8), 1473.
32 Li G, Liu J, Zhang J, et al. Materials, 2023, 16(17), 5857.
33 Li S, Lei X W, Liu L, et al. Science Technology and Engineering, 2021, 21(32), 13837 (in Chinese).
李赛, 雷学文, 刘磊, 等. 科学技术与工程, 2021, 21(32), 13837.
34 Yao D, Wu J, Wang G, et al. Acta Geotechnica, 2021, 16, 1401.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[7] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[10] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[11] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[12] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[13] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[14] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[15] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed