Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050053-6    https://doi.org/10.11896/cldb.24050053
  无机非金属及其复合材料 |
石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附
郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥*, 陈爽
中国石油大学(华东)化学化工学院,山东 青岛 266580
Graphene/Carbon Nanotube Composite Porous Material for Photothermal-assisted Adsorption of High-viscosity Heavy Oil
GUO Shi, GUO Qilin, ZHANG Yingbo, BA Hongyu, LU Xianglin, LIU Huie*, CHEN Shuang
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
下载:  全 文 ( PDF ) ( 12591KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨(GO)为骨架,引入碳纳米管(CNTs)提高力学性能和光热转换性能,聚乙烯吡咯烷酮(PVP)作为交联剂,采用两步水热还原结合冰模板法制备出具有光热吸附性能的碳纳米管/石墨烯复合多孔材料(CNTs/RGA)。对材料的孔道结构及化学成分进行表征,并对CNTs/RGA进行油品吸附试验。结果表明:CNTs/RGA具有丰富且排列有序的孔道结构和高效的光热转换效率,对轻质油品的吸附量为81.61~105.93 g·g-1,在全光谱范围内,CNTs/RGA的平均光吸收率为76.74%,并且在1个太阳光照射下,CNTs/RGA上表面温度可在60 s内迅速升到104 ℃,显著降低重油黏度,增强对重油的吸附能力,吸附量在30 min内可达到107.71 g·g-1。CNTs/RGA具有良好的力学性能,在70%应变条件下的200次压缩回弹后仍保持良好的外观形貌。经10次吸附-解吸后,吸附量仅损失15%,表明CNTs/RGA具有良好的可重复使用性,在清理油品泄漏领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭适
郭启麟
张瀛博
巴泓雨
陆相林
刘会娥
陈爽
关键词:  石墨烯  多孔材料  光热转换  吸附    
Abstract: Carbon nanotubes/graphene composite porous material (CNTs/RGA) was prepared by two-step hydrothermal reduction combined with ice template method. Graphite oxide (GO) was used as the skeleton, carbon nanotubes (CNTs) were introduced to improve the mechanical properties and photothermal conversion properties. Polyvinylpyrrolidone (PVP) was used as the crosslinking agent. The microstructure and chemical properties of CNTs/RGA were analyzed using SEM, FTIR, XPS and water contact angle measurement, and oil adsorption tests were conducted on CNTs/RGA. The results show that:CNTs/RGA has rich and orderly pore structure and high photothermal conversion efficiency. The adsorption capacity of light oil is 81.61—105.93 g·g-1. In the full solar spectrum range, the average light absorbance of CNTs/RGA was 76.74%. Under one sun illumination, the upper surface temperature of CNTs/RGA could be rapidly heated to 104 ℃ within 60 s, significantly reducing the viscosity of heavy oil. The adsorption capacity of CNTs/RGA on heavy oil was enhanced, reaching 107.71 g·g-1 within 30 min. CNTs/RGA had good mechanical properties and maintained a good appearance after 200 compression recoveries under 70% strain conditions. After 10 times of adsorption-desorption, only 15% of the adsorption capacity was lost, indicating that CNTs/RGA has good reusability and shows broad application prospects in the field of offshore oil spill treatment.
Key words:  graphene    porous material    photo-thermal conversion    adsorption
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TQ013.2  
基金资助: 国家自然科学基金(22078366)
通讯作者:  *刘会娥,博士,中国石油大学(华东)化学化工学院教授、博士研究生导师。目前主要从事废弃资源的循环利用技术、新材料研发及其在环保领域的应用等方面的研究。liuhuie@upc.edu.cn   
作者简介:  郭适,中国石油大学(华东)化学化工学院硕士研究生,在刘会娥教授的指导下进行研究。目前主要从事气凝胶油水分离方面的研究。
引用本文:    
郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
GUO Shi, GUO Qilin, ZHANG Yingbo, BA Hongyu, LU Xianglin, LIU Huie, CHEN Shuang. Graphene/Carbon Nanotube Composite Porous Material for Photothermal-assisted Adsorption of High-viscosity Heavy Oil. Materials Reports, 2025, 39(13): 24050053-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050053  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050053
1 Ma W J, Ding Y C, Li Y S, et al.Journal of Membrane Science, 2021, 634, 119402.
2 Moud A A.Fuel, 2022, 316, 123372.
3 Erdem B,İşcan K B.Journal of Sol-Gel Science and Technology, 2021, 98, 528.
4 Yang K, Ren J Q, Cui Y H, et al.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 615, 126272.
5 Bidgoli H, Mortazavi Y, Khodadadi A A.Journal of Hazardous Materials, 2019, 366, 229.
6 Ge J, Shi L A, Wang Y C, et al.Nature Nanotechnology, 2017, 12(5), 434.
7 Liu H E, Lin Z M, Guo S, et al.Journal of Environmental Chemical Engineering, 2023, 11(6), 111335.
8 Liu M C, Chen P Y, Hurt R H.Advanced Materials, 2018, 30(4), 1705080.
9 Zhang C, Liang H Q, Xu Z K, et al.Advanced Science, 2019, 6(18), 1900883.
10 Guo Q L, Chen S, Liu Z X, et al.Journal of Environmental Chemical Engineering, 2022, 10(5), 108312.
11 Xiang C, Wang C, Guo R H, et al.Journal of Materials Science, 2019, 54, 1872.
12 Zhou W, Zhang R, Ding N, et al.Materials Today Communications, 2023, 36, 106490.
13 Wu L R, Qin Z Y, Zhang L X, et al.New Journal of Chemistry, 2017, 41(7), 2527.
14 Chang J, Shi Y, Wu M C, et al.Journal of materials Chemistry A, 2018, 6(19), 9192.
15 Li J J, Zhao Y S, Hao W Z, et al.Diamond and Related Materials, 2023, 135, 109897.
16 Cote L J, Kim F, Huang J X.Journal of the American Chemical Society, 2009, 131(3), 1043.
17 Liu H E, Huang Y F, Ma Y B, et al.CIESC Journal, 2019, 70(1), 280 (in Chinese).
刘会娥, 黄扬帆, 马雁冰, 等.化工学报, 2019, 70(1), 280.
18 Yang F, Hao L B, Zhu Y N, et al.Journal of Environmental Chemical Engineering, 2022, 10(3), 107779.
19 Hu H. Controllable preparation, modification and properties of graphene aerogels. Ph. D. Thesis. Dalian University of Technology, China, 2014 (in Chinese).
胡涵. 石墨烯气凝胶的控制制备、改性及性能研究. 博士学位论文. 大连理工大学, 2014.
20 Rafiee M A, Rafiee J, Wang Z, et al.ACS Nano, 2009, 3(12), 3884.
21 Ma L N, Liu R, Niu H J, et al.Electrochimica Acta, 2016, 222, 429.
22 Yan J, Wang H R, Wu T H, et al.Composites Part A:Applied Science and Manufacturing, 2014, 67, 1.
23 Yao W Q, Mao R W, Gao W W, et al.Carbon, 2020, 158, 418.
[1] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[2] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[3] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[4] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[5] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[6] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[7] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[8] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[9] 庞淼, 钟天源, 潘勇, 齐延新, 黄宇彬. 含硼荧光材料及其在硼中子俘获治疗中的应用[J]. 材料导报, 2025, 39(5): 24090118-6.
[10] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[11] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[12] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[13] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[14] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[15] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed