Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24090118-6    https://doi.org/10.11896/cldb.24090118
  新型生物医用材料 |
含硼荧光材料及其在硼中子俘获治疗中的应用
庞淼, 钟天源, 潘勇, 齐延新*, 黄宇彬*
东北师范大学化学学院,长春 130024
Boron-containing Fluorescent Materials and Their Application in Boron Neutron Capture Therapy
PANG Miao, ZHONG Tianyuan, PAN Yong, QI Yanxin*, HUANG Yubin*
Department of Chemistry, Northeast Normal University, Changchun 130024, China
下载:  全 文 ( PDF ) ( 17290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硼中子俘获治疗(Boron neutron capture therapy,BNCT)作为一种二元靶向放射疗法,已经显示出强大的抗癌潜力。该治疗方法对肿瘤细胞具有高选择性和杀伤力,其有效性主要取决于足够浓度的10B在肿瘤中积累。在BNCT过程中实时观察硼的组织分布和代谢情况一直是治疗过程中的挑战。荧光成像作为一种潜在的灵敏光谱技术,是用于评估组织中的硼分布的可靠选择。因此,将BNCT与荧光成像相结合的研究引起人们的广泛关注。本文重点介绍了含硼荧光材料的种类及应用,并对其中应用在BNCT中的荧光材料进行了详细介绍。进一步讨论了这些含硼材料在BNCT中的技术瓶颈以及可能的解决途径。最后,对BNCT中含硼荧光材料的可行设计和应用前景进行了展望,为含硼荧光材料的设计提供了新的指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞淼
钟天源
潘勇
齐延新
黄宇彬
关键词:  硼中子俘获治疗  成像  荧光分子  多孔材料    
Abstract: Boron neutron capture therapy (BNCT), as a binary targeted radiotherapy, has shown strong anti-cancer potential. This treatment is highly selective and lethal to tumor cells, and its effectiveness mainly depends on the accumulation of sufficient concentrations of 10B in the tumor. Real-time observation of boron’s tissue distribution and metabolism during the BNCT process has always been a challenge in the treatment. Fluorescence imaging, as a potential sensitive spectral technique, is a reliable choice for evaluating boron distribution in tissues. Therefore, research combining BNCT with fluorescence imaging has attracted widespread attention. In this review, we focus on the types and applications of boron-containing fluorescent materials and provide a detailed introduction to the fluorescent materials applied in BNCT. Further, we discuss the technical bottlenecks of these boron-containing materials in BNCT and possible solutions. Finally, we look forward to the feasible design and application prospects of boron-containing fluorescent materials in BNCT, providing new guidance for the design of boron-containing fluorescent materials.
Key words:  boron neutron capture therapy    imaging    fluorescent molecule    porous material
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  R914.2  
基金资助: 国家自然科学基金面上项目(52273124);深圳市科技计划资助(JCYJ20230807112801003);中央高校基本科研业务费-青年教师启动基金(2412023QD017)
通讯作者:  *齐延新,博士,东北师范大学化学学院副教授、博士研究生导师。目前主要研究方向为硼中子俘获治疗和药物载体等。qiyx001@nenu.edu.cn
黄宇彬,博士,东北师范大学化学学院教授、博士研究生导师。目前主要从事生物医用材料和硼中子俘获治疗方面的研究。huangyb350@nenu.edu.cn   
作者简介:  庞淼,东北师范大学化学学院硕士研究生,在黄宇彬教授和齐延新副教授的指导下进行研究。目前主要研究领域为硼中子俘获治疗。
钟天源,东北师范大学化学学院博士研究生,在黄宇彬教授和齐延新副教授的指导下进行研究。目前主要研究领域为硼中子俘获治疗。共同第一作者
引用本文:    
庞淼, 钟天源, 潘勇, 齐延新, 黄宇彬. 含硼荧光材料及其在硼中子俘获治疗中的应用[J]. 材料导报, 2025, 39(5): 24090118-6.
PANG Miao, ZHONG Tianyuan, PAN Yong, QI Yanxin, HUANG Yubin. Boron-containing Fluorescent Materials and Their Application in Boron Neutron Capture Therapy. Materials Reports, 2025, 39(5): 24090118-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090118  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24090118
1 Baig M H, Adil M, Khan R, et al. Seminars in Cancer Biology, 2019, 56, 1.
2 Kaur R, Bhardwaj A, Gupta S. Molecular Biology Reports, 2023, 50, 9663.
3 Chen X K, Zhang Y. Nano Today, 2020, 35, 100993.
4 Li L P, Dai K, Li J Y, et al. Biomaterials, 2021, 268, 120587.
5 Shi Y X, Guo Z B, Fu Q, et al. Nature Communications, 2023, 14, 1884.
6 Chen J J, Dai Q, Yang Q Y, et al. Journal of Nanobiotechnology, 2022, 20, 102.
7 Zhang Y C, Kang H G, Xu H Z, et al. Advanced Materials, 2023, 35(35), 2301479.
8 Kim A, Suzuki M, Matsumoto Y, et al. Biomaterials, 2021, 268, 120551.
9 Xu H, Liu J, Li R X, et al. Coordination Chemistry Reviews, 2024, 511, 215795.
10 Chen D, Xu L X, Wang Z A, et al. Chem, 2023, 9(11), 3212.
11 Dai Q, Yang Q Y, Bao X Y, et al. Molecular Pharmaceutics, 2022, 19(2), 363.
12 Liu J J, Liu Z Y, Wu D C. International Journal of Nanomedicine, 2019, 14, 707.
13 Zhao J, Jin G R, Weng G J, et al. Drug Discovery Today, 2017, 22(9), 1367.
14 Li S, Hou X H, Ma Y F, et al. ACS Omega, 2022, 7(3), 2520.
15 Wang R, Hua S W, Xing Y L, et al. Coordination Chemistry Reviews, 2024, 513, 215866.
16 Shi Y X, Li J Y, Zhang Z Z, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 43387.
17 Wang J L, Chen L F, Ye J, et al. Biomacromolecules, 2017, 18(5), 1466.
18 Kuthala N, Vankayala R, Li Y N, et al. Advanced Materials, 2017, 29(31), 1700850.
19 Wang Z J, Chen Z T, Zhang Z Z, et al. Nano Today, 2022, 45, 101558.
20 Ruan Z, Yuan P, Jing T T, et al. Macromolecular Research, 2018, 26, 270.
21 Singh P, Kaur M, Singh K, et al. Physica E: Low-dimensional Systems and Nanostructures, 2021, 132, 114766.
22 Oloo S O, Smith K M, Vicente M D G H. Cancers, 2023, 15(13), 3277.
23 Fan G, Yang L, Chen Z J. Frontiers of Chemical Science and Engineering, 2014, 8, 405.
24 Bodio E, Denat F, Goze C. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1159.
25 Bismillah A N, Aprahamian I. Chemical Society Reviews, 2021, 50, 5631.
26 Shi Z X, Han X, Hu W B, et al. Chemical Society Reviews, 2020, 49, 7533.
27 Li Y J, Jiang M L, Yan M M, et al. Coordination Chemistry Reviews, 2024, 506, 215718.
28 Bumagina N A, Antina E V, Ksenofontov A A, et al. Coordination Chemistry Reviews, 2022, 469, 214684.
29 Liu M D, Ma S Y, She M Y, et al. Chinese Chemical Letters, 2019, 30, 1815.
30 Mao Z Q, Kim J H, Lee J, et al. Coordination Chemistry Reviews, 2023, 476, 214908.
31 JenaB B, Satapathy R. ChemistrySelect, 2023, 8, e202302310.
32 Xuan S T, Zhao N, Zhou Z H, et al. Journal of Medicinal Chemistry, 2016, 59(5), 2109.
33 Raskolupova V I, Popova T V, Zakharova O D, et al. Molecules, 2021, 26(9), 2679.
34 Kaur P, Singh K. Journal of Materials Chemistry C, 2019, 7(37), 11361.
35 Kaur M, Janaagal A, Balsukuri N, et al. Coordination Chemistry Reviews, 2024, 498, 215428.
36 Zhao M L, Xu Y J, Xie M J, et al. Advanced Healthcare Materials, 2018, 7(18), 1800606.
37 Xiao W Y, Wang P, Ou C J, et al. Biomaterials, 2018, 183, 1.
38 Kalot G, Godard A, Busser B, et al. Cells, 2020, 9(9), 1953.
39 Coninx S, Kalot G, Godard A, et al. International Journal of Pharmaceutics: X, 2022, 4, 100134.
40 Zhao B Y, Liao L H, Zhu Y Y, et al. Journal of Luminescence, 2023, 263, 120099.
41 Li Y X, Zhou H P, Yin S H, et al. Sensors and Actuators B: Chemical, 2016, 235, 33.
42 Malankar G S, Sakunthala A, Navalkar A, et al. Analytica Chimica Acta, 2021, 1150, 338205.
43 Malankar G S, Shelar D S, Manikandan M, et al. Journal of Molecular Structure, 2023, 1281, 135118.
44 Zhu M, Zhou Q, Cheng H, et al. Angewandte Chemie International Edition, 2023, 62, e202213470.
45 Wakchaure V C, Das T, Babu S S. ChemPlusChem, 2019, 84(9), 1253.
46 Yoshino J, Kawaguchi S, Takata S, et al. Results in Chemistry, 2022, 4, 100342.
47 Liu J, Zhang S L, Zhao B, et al. Biosensors and Bioelectronics, 2019, 142, 111497.
48 Bhattacharjee A, Purkait M K, Gumma S. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(7), 2366.
49 Narayan R, Nayak U Y, Raichur A M, etal. Pharmaceutics, 2018, 10(3), 118.
50 Radhakrishnan D, Mohanan S, Choi G, et al. Science and Technology of Advanced Materials, 2022, 23(1), 225.
51 Falsafi M, Saljooghi A S, Abnous K, et al. Biomaterials Science, 2021, 9(5), 1503.
52 Guan Q, Zhou L L, Li W Y, etal. Chemistry-A European Journal, 2020, 26(25), 5583.
53 Dou J L, Bian W W, Zheng X, et al. Materials Chemistry and Physics, 2023, 297, 127345.
54 Dong H, Yang G X, Zhang X, et al. Chemistry-A European Journal, 2018, 24(64), 17148.
55 Cui Y, Chen F, Yin X B. Biosensors and Bioelectronics, 2019, 135, 208.
56 Rastin F, Oryani M A, Iranpour S, et al. Journal of Materials Chemistry B, 2024, 12(4), 872.
57 Reshmi R, Jiju K R, Suma S, et al. Journal of Drug Delivery Science and Technology, 2023, 79, 104098.
58 Zhou L L, Guan Q, Dong Y B. Angewandte Chemie International Edition, 2023, 63, e202314763.
59 Gupta G, Sun Y, Das A, et al. Coordination Chemistry Reviews, 2022, 452, 214308.
60 Atilgan A, Cetin M M, Yu J R, et al. Journal of the American Chemical Society, 2020, 142(43), 18554.
61 Tran A, Leroux M, Michelin C, et al. Journal of Materials Chemistry C, 2023, 11(42), 14896.
62 Li Y Y, Wang F, Liang M S, et al. Talanta, 2024, 278, 126456.
63 Chen D Y, Wu Z S, Zhang Y Z, et al. Food Chemistry, 2023, 418, 136012.
64 Yang Z R, Wang M M, Wang X S, et al. Analytical Chemistry, 2017, 89(3), 1930.
65 Fu Q, Sun S H, Lu K Z, et al. Chinese Chemical Letters, 2024, 35(7), 109136.
66 She C, Wang Z H, Zeng J, et al. Carbon, 2022, 191, 636.
67 Yang J G, He X W, Chen L X, et al. Analytical Methods, 2016, 8(47), 8345.
68 Ye Q H, Yan F Y, Kong D P, et al. Sensors and Actuators B: Chemical, 2017, 250, 712.
69 Liu Z C, Yang W J, Zhu W P, et al. Microchemical Journal, 2024, 204, 110996.
70 Li X, Zhao L X, Wu Y H, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121638.
71 Li J, Kong J L, Ma S H, et al. Advanced Functional Materials, 2021, 31(24), 2100969.
72 Feiner I V J, Pulagam K R, Uribe K B, et al. Journal of Materials Chemistry B, 2021, 9(2), 410.
73 Yan Y B, Jiang L, Zhang S, et al. Biosensors and Bioelectronics, 2022, 205, 114113.
74 Wang Y, Xu Y W, Yang J Y, et al. Materials Chemistry Frontiers, 2021, 5(6), 2771.
75 Liu Y, Zhou S M, Liu Z Q. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 308, 123730.
76 Aniés F, Hamilton I, De Castro C S P, et al. Journal of the American Chemical Society, 2024, 146(19), 13607.
77 Ma W L, Wang Y Y, Xue Y L, et al. Chemical Science, 2024, 15(11), 4019.
[1] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[2] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[3] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[4] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[5] 李佳佳, 张瑞龙, 张忠平. 亚铁离子荧光探针研究进展[J]. 材料导报, 2023, 37(2): 21030055-8.
[6] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[7] 黄世杰, 赵春霞, 王硕, 黄浩然, 李嘉鑫, 李辉, 向东, 李云涛. 聚苯乙烯/α-磷酸锆多孔材料制备及油水乳液分离研究[J]. 材料导报, 2023, 37(16): 21110076-9.
[8] 秦若男, 果春焕, 李艳春, 邵帅齐, 姜风春. 多孔金属材料阻尼性能的研究进展[J]. 材料导报, 2023, 37(15): 21100001-10.
[9] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[10] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[11] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[12] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[13] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[14] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[15] 王信刚, 刘世成, 雷为愉, 张晨阳. 石蜡相变微胶囊的热学性能与红外隐身性能[J]. 材料导报, 2022, 36(24): 21090229-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed