Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24090049-6    https://doi.org/10.11896/cldb.24090049
  无机非金属及其复合材料 |
百年混凝土桥梁方形带肋钢筋力学性能研究
翟慕赛, 刘可凡, 陶怡然, 陈建兵*
苏州科技大学土木工程学院,江苏 苏州 215009
Study on Mechanical Properties of Square Ribbed Steel Bars in a Century-old Concrete Bridge
ZHAI Musai, LIU Kefan, TAO Yiran, CHEN Jianbing*
School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 24842KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究混凝土桥梁方形带肋钢筋的基本力学性能,针对从苏州市某百年混凝土桥梁获取的26根方形带肋钢筋,利用宏微观形态分析、化学成分测定、静力拉伸试验等方法开展了方形带肋钢筋表观特征、元素含量、力学性能等分析。结果表明百年混凝土桥梁方形带肋钢筋表观特征部分满足现行规范要求。钢筋基体组织主要由铁素体与珠光体构成,同时存在一定的硫化物、硅酸盐等夹杂物,其中硅酸盐夹杂物含量显著高于现代钢筋;含碳量低于0.25%,属于低碳钢,化学元素Si与Mn含量满足现行规范要求,S与P含量高于现行规范的最高限值。钢筋屈服强度、极限强度、断裂伸长率、弹性模量、强屈比的平均值分别为276.40 MPa、413.43 MPa、35.49%、1.92×105 MPa、1.49;弹性模量略低于现代桥梁用钢筋的弹性模量,强屈比、断裂伸长率均满足现行规范对桥梁用钢筋的要求。本工作的成果为同时期混凝土桥梁和历史建筑提供基本力学参数,对同类型混凝土建筑物的维护与加固具有工程意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟慕赛
刘可凡
陶怡然
陈建兵
关键词:  百年混凝土桥梁  方形带肋钢筋  表观特征  力学性能  拉伸试验    
Abstract: To study the basic mechanical properties of square ribbed steel bars in concrete bridges, 26 pieces of the square ribbed steel bar samples were acquired from a century-old concrete bridge in Suzhou city, and analyses on surface characteristics, element content, mechanical properties of the samples was carried out by means of macro- and micro-morphology observation, chemical composition measurement, and static tensile test. The results showed that the surface characteristics of square ribbed steel bars in the century-old concrete bridge partly meet the current standard specifications. The microstructure of the steel bars consisted mainly of ferrites and pearlites, with a certain amount of inclusions such as sulfides and silicates in which the content of the latter was significantly higher than that in modern steel bars. The carbon content was less than 0.25%, indicating that the square ribbed steel bars were made of low-carbon steel. The contents of Si and Mn elements met the current standard specifications, while the contents of S and P were higher than the upper acceptable limits in the current standard. The century-old steel bars were measured to have yield strength, ultimate tensile strength, percentage elongation after fracture, elastic modulus, and strength-to-yield ratio (all were average values) of 276.40 MPa, 413.43 MPa, 35.49%, 1.92×105 MPa, and 1.49, respectively. The elastic modulus was slightly lower than that of the steel bars used in modern bridges, while the strength-to-yield ratio and the percentage elongation after fracture both met the current standard specifications for steel bars in bridges. The output of this work provides basic mechanical parameters for concrete bridges and historical buildings at the same period, which are of a certain engineering importance for the maintenance and reinforcement of similar concrete structures.
Key words:  century-old concrete bridge    square ribbed steel bar    surface characteristic    mechanical property    tensile test
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TB31  
  U446.1  
基金资助: 国家自然科学基金(51908395);江苏省自然科学基金(BK20190945);江苏省高等学校自然科学研究面上项目(19KJB580004);江苏省结构工程重点实验室开放课题(ZD1804);苏州市科技计划(基础研究)项目(SJC2023002)
通讯作者:  *陈建兵,苏州科技大学土木工程学院教授、硕士研究生导师。主要从事桥梁结构设计理论及应用、钢-混凝土组合结构理论等方面的研究工作。szctt2009@163.com   
作者简介:  翟慕赛,博士,苏州科技大学土木工程学院讲师、硕士研究生导师。主要从事钢桥与组合结构桥梁、桥梁疲劳损伤机理与安全维护等方面的研究工作。
引用本文:    
翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
ZHAI Musai, LIU Kefan, TAO Yiran, CHEN Jianbing. Study on Mechanical Properties of Square Ribbed Steel Bars in a Century-old Concrete Bridge. Materials Reports, 2025, 39(5): 24090049-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090049  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24090049
1 Editorial Department of China Journal of Highway and Transport. China Journal Highway and Transport, 2024, 37(12), 1 (in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2024, 37(12), 1.
2 Wang C S, Zhou J, Wu Q Y, et al. China Journal of Highway and Transport, 2012, 25(6), 101 (in Chinese).
王春生, 周江, 吴全有, 等. 中国公路学报, 2012, 25(6), 101.
3 Shao X D, Qiu M H, Yan B F, et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
4 Duffó G S, Morris W, Raspini I, et al. Corrosion Science, 2004, 46(9), 2143.
5 Duffó G S, Reinoso M, Ramos C P. et al. Cement and Concrete Research, 2012, 42(1), 111.
6 Lin F, Gu X L, Xiao B H. Structural Engineers, 2010, 26(1), 108 (in Chinese).
林峰, 顾祥林, 肖炳辉. 结构工程师, 2010, 26(1), 108.
7 Chun Q, Wang J G, Feng S H, et al. Journal of Southeast University(Natural Science Edition), 2014, 44(4), 817 (in Chinese).
淳庆, 王建国, 冯世虎, 等. 东南大学学报(自然科学版), 2014, 44(4), 817.
8 Zheng S J, Bai X, Jiang L X. Building Structure, 2022, 52(3), 78 (in Chinese).
郑士举, 白雪, 蒋利学. 建筑结构, 2022, 52(3), 78.
9 Mi Z D, Chun Q, Jin H. Journal of Huaqiao University(Natural Science), 2023, 44(1), 38 (in Chinese).
糜镇东, 淳庆, 金辉. 华侨大学学报(自然科学版), 2023, 44(1), 38.
10 Shi J G, Li G C, Hu M H, et al. Journal of Architecture and Civil Engineering, 2023, 40(6), 10 (in Chinese).
石建光, 李国聪, 胡红梅, 等. 建筑科学与工程学报, 2023, 40(6), 10.
11 Tian Y, Zhang G Y, Ye H L, et al. Construction and Building Materials, 2023, 369, 130504.
12 Zhang J Q, Song Z W, Han B, et al. China Civil Engineering Journal, 2022, 55(12), 65 (in Chinese).
张劲泉, 宋紫薇, 韩冰, 等. 土木工程学报, 2022, 55(12), 65.
13 Ambroziak A, Haustein E, Niedostatkiewicz M. Materials, 2021, 14(1), 20.
14 Paulík P, Bauvík M, Ševík P, et al. Procedia Engineering, 2016, 156, 326.
15 Wolert P J, Kolodziejczyk M, Stallings J M, et al. Frontiers in Built Environment, 2020, 6, 1.
16 Sena-Cruz J, Ferreira R M, Ramos L F, et al. International Journal of Architectural Heritage, 2013, 7(6), 628.
17 Gebauer J, Harnik A B. Cement and Concrete Research, 1975, 5(2), 163.
18 Hellebois A, Launoy A, Pierre C, et al. Construction and Building Materials, 2013, 44, 149.
19 Czaderski C, Motavalli M. Composites Part B Engineering, 2007, 38, 878.
20 Pettigrew C S, Barr P J, Maguire M, et al. Journal of Bridge Engineering, 2016, 21(9), 04016054.
21 Cao J A, Wen Y S. Journal of Changsha Railway University, 1998, 16(4), 15 (in Chinese).
曹建安, 文雨松. 长沙铁道学院学报, 1998, 16(4), 15.
22 Zhang W P, Li S B, Gu X L, et al. China Journal of Highway and Transport. 2009, 22(2), 53 (in Chinese).
张伟平, 李士彬, 顾祥林, 等. 中国公路学报, 2009, 22(2), 53.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[3] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[4] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[5] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[6] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[7] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[8] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[9] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[10] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[13] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[14] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[15] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed