Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24090019-8    https://doi.org/10.11896/cldb.24090019
  新型生物医用材料 |
Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究
王森巍1, 王丽1, 王明庆1, 佘加1,2,*, 易嘉琰1,2, 陈先华1,2, 潘复生1,2
1 重庆大学材料科学与工程学院,重庆 400000
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400000
Microstructure and Properties of Mg-xSc (x=0.5,1.0,3.0,5.0) Biomedical Alloys
WANG Senwei1, WANG Li1, WANG Mingqing1, SHE Jia1,2,*, YI Jiayan1,2, CHEN Xianhua1,2, PAN Fusheng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400000, China
2 National Engineering Research Center for Mg Alloys, Chongqing University, Chongqing 400000, China
下载:  全 文 ( PDF ) ( 37379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 医疗植入器械正朝着周期性降解和减少并发症的方向发展。镁合金由于其优异的生物可降解性和生物相容性而成为制备医疗植入物的候选材料。本工作研究了低合金化Mg-xSc(x=0.5,1.0,3.0,5.0,x表示质量百分数)合金的微观组织对其力学性能和耐腐蚀性能的影响。研究表明,Sc固溶于Mg基体中,通过固溶强化作用提高了极限抗拉强度,并激活了非基面滑移系,提高了断裂延伸率,其中Mg-5.0Sc的极限抗拉强度和断裂延伸率分别达到277 MPa和37.8%。采用三种腐蚀测试手段(失重、析氢和电化学测试)综合评价了Mg-xSc合金在Hanks平衡盐溶液中的腐蚀情况,Mg-5.0Sc合金的耐腐蚀性能最为优异。所有合金的腐蚀速率均小于0.5 mm/y,腐蚀产物主要由Sc2O3和Mg(OH)2组成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王森巍
王丽
王明庆
佘加
易嘉琰
陈先华
潘复生
关键词:  低合金化Mg-Sc合金  显微组织  力学性能  耐腐蚀性能    
Abstract: Medical implants are moving towards cyclic degradation and reduction of complications. Magnesium alloys are excellent candidates for the preparation of medical implants due to their excellent biodegradability and biocompatibility. In this paper, the effects of microstructure of under-alloyed Mg-xSc (x=0.5, 1.0, 3.0, 5.0 in wt%) alloys on their mechanical properties and corrosion resistance were investigated. The expe-rimental study showed that the solid solution of Sc in the Mg matrix increased the ultimate tensile strength and activated the non-basal slip system to improve fracture elongation through solid solution strengthening. The Mg-5.0Sc alloy was measured to have an ultimate tensile strength and a fracture elongation of 277 MPa and 37.8%, respectively. The corrosion of the Mg-xSc alloys in Hanks’ balanced salt solution were evaluated through three methods (weight loss, hydrogen evolution, and electrochemical tests), indicating the superior corrosion resistance of Mg-5.0Sc to the other three alloys. The corrosion rates of the under-alloyed Mg-xSc were all lower than 0.5 mm/y according to weight loss calculation, and the corrosion products consisted mainly of Sc2O3 and Mg(OH)2.
Key words:  under-alloyed Mg-Sc alloy    microstructure    mechanical property    corrosion resistance
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG14  
基金资助: 国家自然科学基金(52471117)
通讯作者:  *佘加,重庆大学材料科学与工程学院副教授、硕士研究生导师、国家镁合金材料工程技术研究中心骨干研究人员。2015年于重庆大学获工学博士学位。研究方向为生物镁合金材料、高性能变形镁合金材料设计与先进加工技术。jiashe@foxmail.com   
作者简介:  王森巍,重庆大学材料科学与工程学院博士研究生,在潘复生院士和佘加副教授的指导下进行研究。目前主要研究领域为镁合金心血管支架。
引用本文:    
王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
WANG Senwei, WANG Li, WANG Mingqing, SHE Jia, YI Jiayan, CHEN Xianhua, PAN Fusheng. Microstructure and Properties of Mg-xSc (x=0.5,1.0,3.0,5.0) Biomedical Alloys. Materials Reports, 2025, 39(5): 24090019-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090019  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24090019
1 Wang S, Du C, Shen X, et al. Journal of Magnesium and Alloys, 2023, 11, 3012.
2 Guo X, Zhao H, Song J, et al. Journal of Alloys and Compounds, 2024, 1002, 175451.
3 Jing X, Zhou S, Ouyang S, et al. Journal of Materials Research and Technology, 2024, 31, 3466.
4 Shi C, Wan K, Gao D, et al. Acta Materiae Compositae Sinica, 2024, 41(2), 640(in Chinese).
石尘尘, 苑克真, 高冬芳, 等. 复合材料学报, 2024, 41(2), 640.
5 Xu Y, Cheng M, Zhao P, et al. Chinese Journal of Medical Instrumentation, 2024, 48(2), 208(in Chinese).
许耘, 程茂波, 赵鹏. 中国医疗器械杂志, 2024, 48(2), 208.
6 Wang C, Cui Y, Liu H, et al. Materials Reports, 2015, 29(11), 55(in Chinese).
王昌, 崔亚军, 刘汉源, 等. 材料导报, 2015, 29(11), 55.
7 Liu H, Chen L, Zhang H, et al. Journal of Netshape Forming Engineering, 2022, 14(5), 121(in Chinese).
刘昊, 陈靓瑜, 张洪岳, 等. 精密成形工程, 2022, 14(5), 121.
8 Yan T, Tan L, Xiong D, et al. Materials Reports, 2008(1), 110(in Chinese).
颜廷亭, 谭丽丽, 熊党生, 等. 材料导报, 2008(1), 110.
9 Weng W, Biesikierski A, Li Y, et al. Acta Biomaterialia, 2021, 130, 80.
10 Zhang C, Wu L, Liu H, et al. Corrosion Science, 2020, 174, 108831.
11 Liu J, Lin Y, Bian D, et al. Acta Biomaterialia, 2019, 98, 50.
12 Munir K, Lin J, Wen C, et al. Acta Biomaterialia, 2020, 102, 493.
13 Zhu Q, Li Y, Cao F, et al. Nature Communications, 2022, 13(1), 5838.
14 Peng P, She J, Tang A, et al. Materials Science and Engineering A, 2019, 764, 138144.
15 Wu X, Jing X, Xiao H, et al. Journal of Materials Research and Technology, 2022, 21, 1395.
16 Wang S, Zhang K, Ouyang S, et al. Journal of Materials Engineering and Performance, 2023, 32(23), 10877.
17 Niu E, Zhang K, Tong J, et al. Journal of Materials Research, 2024, 39, 1622.
18 Chen G, Song J, Yang H, et al. Journal of Materials Research and Technology, 2024, 29, 3494.
19 Peng P, Tang A, She J, et al. Materials Reports, 2019, 33(9), 1526(in Chinese).
彭鹏, 汤爱涛, 佘加, 等. 材料导报, 2019, 33(9), 1526.
20 Fu G, Xue F, Zhang X, et al. Specail Casting & Nonferrous Alloys, 2024, 44(3), 377(in Chinese).
付广艳, 薛丰, 张行, 等. 特种铸造及有色合金, 2024, 44(3), 377.
21 Lou Y, Yang C, Zhang X, et al. Journal of Netshape Forming Engineering, 2024, 16(1), 24(in Chinese).
娄崟崟, 杨初斌, 张小联, 等. 精密成形工程, 2024, 16(1), 24.
22 Wang C, Qian K, Wu Y, et al. Corrosion Science, 2024, 229, 111893.
23 Zeng R, Sun L, Zheng Y, et al. Corrosion Science, 2014, 79, 69.
24 Li J, Ma Y, Hui Z, et al. Journal of Netshape Forming Engineering, 2016, 8(2)26(in Chinese).
李捷帆, 马莹, 惠增哲, 等. 精密成形工程, 2016, 8(2), 26.
25 Ci W, Chen X, Liu C, et al. Journal of Materials Science & Technology, 2024, 181, 138.
26 Zeng C, Yuan T, Peng W, et al. Journal of Netshape Forming Engineering, 2023, 15(7), 104(in Chinese).
曾朝伟, 袁婷, 彭威, 等. 精密成形工程, 2023, 15(7), 104.
27 Savaedi Z, Mirzaheh H, Aghdam R M, et al. Journal of Materials Research and Technology, 2022, 19, 3100.
28 Niu J, Guan X, Zhang J, et al. Corrosion Science, 2016, 113, 183.
29 Zhang X, Yuan G, Mao L, et al. Materials Letters, 2012, 66(1), 209.
30 Hou S, Yang Z, Li Y, et al. Coatings, 2020, 10(10), 999.
31 Chen J, Tan J, Yang K, et al. Bioactive Materials, 2017, 2(1), 19.
32 Yang L, Ma L, Huang Y, et al. Materials Science and Engineering C, 2017, 75, 1351.
33 Gu X, Zheng Y. Frontiers of Materials Science in China, 2010, 4, 111.
[1] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[2] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[3] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[4] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[5] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[6] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[7] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[8] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[9] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[10] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[11] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[14] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[15] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed