Abstract: Artificial cells are synthetic microstructures engineered to replicate the structural and functional characteristics of living cells. These cell-like constructs have garnered significant attention in recent years due to their potential to enhance our understanding of the origins of life and their application in the development of biologically active materials. Consequently, they have become a focal point in interdisciplinary research across materials science, chemistry, and biomedicine. The methods for constructing artificial cells can be broadly categorized into two main approaches, i.e. bottom-up and top-down, based on the scale of construction. These two methods have their own characteristics and complement each other. Among them, bottom-up approach, which involves the self-assembly of molecular components into larger, cell-like structures, offers a wide range of options for selecting building blocks. This flexibility allows for the tailoring of functionalities that are consistent with the properties of the chosen biomaterials, thereby unlocking numerous potential applications in biomedicine due to the inherent biocompatibility of these building blocks. This review focuses on reported models of artificial cells constructed by various methods, encompassing a diverse array of biomolecular building blocks, including lipid and phospholipid-based structures (such as liposomes and giant unilamellar vesicles), polysaccharide-based structures (polysaccharidosomes), protein-based structures (proteinosomes), polymer-based structures (polymersomes), and colloidal particle-based structures (colloidosomes). Additionally, the current applications of these artificial cells are also explored, highlighting their roles as biological carriers, micro-reactors, biosensors, and signal regulators, with a particular emphasis on their use in medical diagnostics and therapeutic interventions.
李家奇, 窦红静. 人工细胞的构筑及生物医学应用[J]. 材料导报, 2025, 39(5): 24080236-13.
LI Jiaqi, DOU Hongjing. Construction of Artificial Cells and Their Biomedical Application. Materials Reports, 2025, 39(5): 24080236-13.
1 Jiang W, Wu Z, Shen J, et al. ACS Nano, 2022, 16(10), 15705. 2 Chang Thomas M S. 1957 Report on “method for preparing artificial hemoglobin corpuscles”. BSc Thesis, McGill University, CA, 1957. 3 Jeong S, Nguyen H T, Kim C H, et al. Advanced Functional Materials, 2020, 30(11), 1907182. 4 Chang H Y, Sheng Y J, Tsao H K. Soft Matter, 2014, 10(34), 6373. 5 Paola Albanese, Fabio Mavelli, Emiliano Altamura. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1161730. 6 Xu C, Hu S, Chen X. Materials Today, 2016(19), 516. 7 Cai X, Jian M, Zhou S, et al. Progress in Chemistry, 2022, 34(11), 2462(in Chinese). 蔡雪儿, 简美玲, 周少红, 等. 化学进展, 2022, 34(11), 2462. 8 Hutchison C A Ⅲ, Chuang R Y, Noskov V N, et al. Science, 2016, 351(6280), aad6253. 9 Mann S. Accounts of Chemical Research, 2012, 45(12), 2131. 10 Avery O T, Macleod C M, McCarty M. Journal of Experimental Medicine, 1944, 79(2), 137. 11 Claire M, Gocayne J D, White O, et al. Science, 1995, 270, 397. 12 Gil R, Silva F J, Peretó J, et al. Microbiology and Molecular Biology Reviews, 2004, 68(3), 518. 13 Luisi P L, Ferri F, Stano P. Naturwissenschaften, 2006, 93(1), 1. 14 Gibson D G, Glass J I, Venter J C, et al. Science, 2010, 329(5987), 52. 15 Pelletier J F, Sun L, Wise K S, et al. Cell, 2021, 184(9), 2430. 16 Cello J, Paul A V, Wimmer E. Science, 2002, 297(5583), 1016. 17 van Swaay D, deMello A. Lab Chip, 2013, 13(5), 752. 18 Meierhenrich U J, Filippi J J, Dworkin J, et al. Angewandte Chemie International Edition, 2010, 49, 3738. 19 Szoka Jr F, Papahadjopoulos D. Annual Review of Biophysics, 1980, 9, 467. 20 Huang X, Li M, Green D C, et al. Nature Communications, 2013, 4, 2239. 21 Peters R J, Marguet M, Lecommandoux S, et al. Angewandte Chemie International Edition, 2014, 53(1), 146. 22 Martino C, Kim S H, Weitz D A, et al. Angewandte Chemie International Edition, 2012, 51, 6416. 23 Tamate R, Ueki T, Yoshida R. Advanced Materials, 2015, 27, 837. 24 Li M, Huang X, Mann S, et al. Current Opinion in Chemical Biology, 2014, 22, 1. 25 Dzieciol A J, Mann S. Chemical Society Reviews, 2012, 41(1), 79. 26 Walde P, Cosentino K, Stano P. et al. Chembiochem, 2010, 11(7), 848. 27 Angelova M I, Dimiter D S. Faraday Discussions of the Chemical Society, 1986, 81, 303. 28 Herianto S, Chien P J, Tu H L, et al. Biomaterials Advances, 2022, 142, 213156. 29 Reeves J P, Dowben R M. Journal of Cellular Physiology, 1969, 73(1), 49. 30 Patil Y P, Jadhav S. Chemistry and Physics of Lipids, 2014, 177, 8. 31 Lu Y, Allegri G, Huskens J. Materials Horizons, 2021, 9, 892. 32 Dimitrov D, Angelova M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 253, 323. 33 Kamiya K, Takeuchi S. Journal of Materials Chemistry B, 2017, 5, 5911. 34 Pautot S, Barbara J, Weitz D A, et al. Langmuir, 2003, 19(7), 2870. 35 Trantidou T, Friddin M, Ces O, et al. ACS Nano, 2017, 11(7), 6549. 36 Stein H, Spindler S, Sandoghdar V, et al. Frontiers in Physiology, 2017, 8, 63. 37 Montes L R, Alonso A, Goni F M, et al. Biophysical Journal, 2007, 93(10), 3548. 38 Feng B, Zhou F, Yu H, et al. Biomaterials Science, 2017, 5, 1522. 39 Pautot S, Frisken B J, Weitz D A. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19), 10718. 40 Hu P C, Malmstadt N. Biophysical Journal, 2011, 100(3), 169a. 41 Gañán-Calvo A, González-Prieto R, Flores-Mosquera M, et al. Nature Physics, 2007, 3, 737. 42 Cistola D P, Hamilton J A, Small D M, et al. Biochemistry, 1988, 27(6), 1881. 43 Chechetka S A, Yuba E, Miyako E, et al. Angewandte Chemie International Edition, 2016, 55(22), 6476. 44 Kundu N, Mondal D, Sarkar N. Biophysical Reviews, 2020, 12(5), 1117. 45 Wang X, Tian L, Mann S, et al. Chemical Science, 2019, 10(41), 9446. 46 Mukwaya V, Zhang P, Dou H, et al. ACS Nano, 2020, 14(7), 7899. 47 Xie Y L, Wang M J, Yao S J. Langmuir, 2009, 25(16), 8999. 48 Jia Y, Fei J, Li J, et al. Chemical Communications, 2011, 47(4), 1175. 49 Ugrinic M, Zambrano A, de Mello A, et al. Chemical Communications, 2018, 54(3), 287. 50 Kuan S L, Bergamini F R G, Weil T. Chemical Society Reviews, 2018, 47(24), 9069. 51 Rawlings A E, Bramble J P, Staniland S S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45), 16094. 52 Gobbo P, Patil A J, Li M, et al. Nature Materials, 2018, 17, 1145. 53 Zhou P, Liu X, Huang X, et al. ACS Macro Letters, 2016, 5(8), 961. 54 Rideau E, Dimova R, Landfester K, et al. Chemical Society Reviews, 2018, 47(23), 8572. 55 Dos Santos E C, Angelini A, Palivan C G, et al. Chemistry, 2020, 2(2), 470. 56 Palivan C G, Goers R, Meier W, et al. Chemical Society Reviews, 2016, 45(2), 377. 57 Belluati A, Thamboo S, Meier W, et al. Advanced Functional Materials, 2020, 30, 2002949. 58 Thamboo S, Najer A, Palivan C G, et al. Advanced Functional Materials, 2019, 29, 1904267. 59 Dimova Rumiana, Carlos Marques. The giant vesicle book, CRC Press, US, 2019, pp.40. 60 Garni M, Thamboo S, Palivan C G, et al. Biochimica et Biophysica Acta, 2017, 1859(4), 619. 61 Maffeis V, Heuberger L, Palivan C G, et al. Advanced Science, 2024, 11, 2305837. 62 Dou H, Li M, Qiao Y, et al. Nature Communications, 2017, 8, 426. 63 You J, Qian Y, Dou H, et al. Chemistry-A European Journal, 2024, 30, e202401435. 64 Park J H, Galanti A, Gobbo P, et al. European Journal of Organic Chemistry, 2022, 43, 59. 65 Gañán-Calvo A M, Gordillo J M. Physical Review Letters, 2001, 87, 274501. 66 Dinsmore A D, Hsu M F, Weitz D A, et al. Science, 2002, 298, 1006. 67 Cabral H, Miyata K, Osada K, et al. Chemical Reviews, 2018, 118(14), 6844. 68 Yewdall, N A, Spruijt E, et al. Current Opinion in Colloid & Interface Science, 2021, 52, 101416. 69 Vanswaay D, Tang T Y D, DeMello A, et al. Angewandte Chemie International Edition, 2015, 54, 8398. 70 Delvart A. Adsorption properties of functionalized α-glucans for the elaboration of innovative biobased materials. Ph. D. Thesis, Nantes Université, France, 2022. 71 Cook A B, Novosedlik S, van Hest J C M. Accounts of Materials Research, 2023, 4(3), 287. 72 Shin Y, Brangwynne C P. Science, 2017, 357(6357), eaaf4382. 73 Mason A F, Buddingh’ B C, van Hest J C M, et al. Journal of the Ame-rican Chemical Society, 2017, 139(48), 17309. 74 Dora Tang T Y, Rohaida C H C, Mann S, et al. Nature Chemistry, 2014, 6(6), 527. 75 Williams D S, Patil A J, Mann S, et al. Small, 2014, 10(9), 1830. 76 Booth R, Qiao Y, Mann S, et al. Angewandte Chemie International Edition, 2019, 58(27), 9120. 77 Mu W, Ji Z, Qiao Y, et al. Science Advances, 2021, 7(22), eabf9000. 78 Zhang Y, Chen Y, Mann S, et al. Journal of the American Chemical Society, 2021, 143(7), 2866. 79 Seo H, Lee H. Nature Communications, 2022, 13(1), 5179. 80 Allen M E, Hindley J W, Elani Y, et al. Nature Reviews Chemistry, 2022, 6(8), 562. 81 Sato Y, Takinoue M. JACS Au, 2021, 2(1), 159. 82 Margolis L, Sadovsky Y. PLOS Biology, 2019, 17(7), e3000363. 83 Lentini R, Santero S, Chizzolini F, et al. Nature Communications, 2014, 5, 4012. 84 Elani Y, Trantidou T, Ces O, et al. Scientific Reports, 2018, 8(1), 4564. 85 Xu C, Martin N, Li M, et al. Nature, 2022, 609(7929), 1029. 86 Chang T M. Artificial Cells, Blood Substitutes, and Biotechnology, 2007, 35(6), 545. 87 Krinsky N, Kaduri M, Zinger A, et al. Advanced Healthcare Materials, 2018, 7(9), 1701163. 88 Fathi K S, Mohammadhosseini M, Davaran S, et al. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1), 1. 89 Bedau M A, McCaskill J S, Packard N H, et al. Artificial Life, 2010, 16(1), 89. 90 Elani Y, Law R V, Ces O. Nature Communications, 2014, 5(1), 5305. 91 Omidvar M, Zdarta J, Sigurdardóttir S B, et al. Biotechnology Advances, 2022, 54, 107798. 92 Lin C, Zhang Q X, Yeh Y C. Analytical Methods, 2019, 11(10), 1400. 93 Ahmad T, Iqbal A, Al-Harrasi A. et al. Nanomaterials (Basel), 2022, 12(9), 1475. 94 Deng S, Gu J, Cai K, et al. Journal of Nanobiotechnology, 2022, 20(1), 415. 95 Charalambous K, Booth P J, Ces O, et al. Journal of the American Che-mical Society, 2012, 134(13), 5746. 96 Hindley J W, Zheleva D G, Ces O, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34), 16711. 97 Yang Qiuxia, Guo Zhenzhen, Tan Weihong. Journal of the American Chemical Society, 2021, 143(1), 232. 98 Buddingh’ B C, Elzinga J, van Hest J C M. Nature Communications, 2020, 11(1), 1652. 99 Niederholtmeyer H, Chaggan C, Devaraj N K. Nature Communications, 2018, 9(1), 5027. 100 Kamiya K, Kawano R, Takeuchi S, et al. Nature Chemistry, 2016, 8(9), 881. 101 Zhao X, Tang D, Wang C, et al. Nanoscale, 2020, 12(18), 10189. 102 Waeterschoot J, Gosselé W, Casadevall I, et al. Nature Communications, 2024, 15(1), 2504. 103 Vincy A, Mazumder S, Vankayala R, et al. Frontiers in Chemistry, 2022, 10, 905256. 104 Glassman P M, Hood E D, Muzykantov V R, et al. Advanced Drug Delivery Reviews, 2021, 178, 113992. 105 Hu C M, Fang R H, Zhang L. Advanced Healthcare Materials, 2012, 1(5), 537. 106 Hou K, Zhang Y, Wang Z, et al. ACS Applied Materials & Interfaces, 2022, 14(3), 3825. 107 Liu W L, Liu T, Zhang X Z, et al. Advanced Materials, 2018, 30(35), e1802006. 108 Kaouass M, Beaulieu R, Balicki D. Journal of Controlled Release, 2006, 113(3), 245. 109 Ni J, Sun Y, Li X, et al. ACS Omega, 2019, 4(7), 12727. 110 Jin W, Lin X, Tang R, et al. Nature Communications, 2021, 12(1), 6327. 111 Ai Y, Xie R, Liang Q, et al. Small, 2020, 16(9), e1903940. 112 Yang C, Kong L, Zhang Z. Nano Today, 2022, 44, 101481. 113 Nomura S M, Tsumoto K, Yoshikawa K, et al. Chembiochem, 2003, 4(11), 1172. 114 Elani Y, Law R V, Ces O. Physical Chemistry Chemical Physics, 2015, 17(24), 15534. 115 van Raad D, Huber T. ACS Synthetic Biology, 2021, 10(5), 1237. 116 Xie M, Ye H, Fussenegger M, et al. Science, 2016, 354(6317), 1296. 117 Hu Q, Lan H, Zhang Z, et al. Journal of Controlled Release, 2024, 365, 176. 118 Liu S, Zhang Y, Li M, et al. Nature Chemistry, 2020, 12, 1165. 119 Wang L, Song S, Sánchez S, et al. Small, 2020, 16(27), e1907680. 120 Mukwaya V, Zhang P, Dou H, et al. Cell Reports Physical Science, 2021, 2(1), 100291. 121 Hou F, Guo Z, Zhao C X, et al. ACS Nano, 2024, 18(12), 8571. 122 Shields C W, Wang L L, Evans M A, et al. Advanced Materials, 2020, 32(13), e1901633. 123 Eggermont L J, Paulis L E, Figdor C G, et al. Trends in Biotechnology, 2014, 32(9), 456. 124 Meyer R A, Sunshine J C, Green J J, et al. Small, 2015, 11(13), 1519. 125 Le Q V, Lee J, Oh Y K, et al. Bioactive Materials, 2021, 15, 160. 126 López-Cantillo G, Urueña C, Ramírez-Segura C, et al. Frontiers in Immunology, 2022, 13, 878209. 127 Schwarz-Schilling M, Aufinger L, Simmel F C, et al. Integrative Biology, 2016, 8(4), 564. 128 Ding Y, Contreras-Llano L E, Tan C, et al. ACS Applied Materials & Interfaces, 2018, 10(36), 30137. 129 Granieri L, Baret J C, Merten C A, et al. Chemical Biology, 2010, 17(3), 229. 130 Kunding A H, Mortensen M W, Stamou D, et al. Biophysical Journal, 2008, 95(3), 1176. 131 Woo Y, Heo Y, Yi G R, et al. Journal of Biomedical Nanotechnology, 2013, 9(4), 610. 132 Tsuji G, Fujii S, Yomo T, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3), 590. 133 Lu T, Liese S, Spruijt E, et al. Journal of the American Chemical Society, 2022, 144(30), 13451. 134 Naz M, Mukwaya V, Dou H, et al. Advanced Functional Materials, 2024, 34, 2405781.