Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24080236-13    https://doi.org/10.11896/cldb.24080236
  新型生物医用材料 |
人工细胞的构筑及生物医学应用
李家奇, 窦红静*
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Construction of Artificial Cells and Their Biomedical Application
LI Jiaqi, DOU Hongjing*
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 31647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工细胞是一类具有活细胞结构和功能特性的人造微囊体,因相关研究对于探寻生命起源、构筑生物活性材料的重要意义,成为近年来材料、化学、生物医学等多学科交叉领域的研究热点。根据构筑方法是从微观到宏观尺度,还是相反地从宏观到微观尺度,构筑人工细胞的方法可分为“自下而上”和“自上而下”两大类,两者各具特色、互为补充。其中,由自下而上方法构筑的人工细胞具备更为丰富的生物分子构筑单元和灵活的功能性,因而在生物医学领域展现出巨大的应用前景。基于如上背景,本文综述了由各类方法构筑的人工细胞模型,包括脂质体囊泡、多糖囊泡、蛋白类囊泡、聚合物囊泡和无机胶体囊泡等;并根据不同种类人工细胞的功能特性,讨论了它们作为生物分子运输载体、微型反应器、生物传感器和信号调节器等在生物医学领域尤其是医学诊断和治疗中的应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李家奇
窦红静
关键词:  人工细胞  微囊体  生物医学应用  医学诊疗    
Abstract: Artificial cells are synthetic microstructures engineered to replicate the structural and functional characteristics of living cells. These cell-like constructs have garnered significant attention in recent years due to their potential to enhance our understanding of the origins of life and their application in the development of biologically active materials. Consequently, they have become a focal point in interdisciplinary research across materials science, chemistry, and biomedicine. The methods for constructing artificial cells can be broadly categorized into two main approaches, i.e. bottom-up and top-down, based on the scale of construction. These two methods have their own characteristics and complement each other. Among them, bottom-up approach, which involves the self-assembly of molecular components into larger, cell-like structures, offers a wide range of options for selecting building blocks. This flexibility allows for the tailoring of functionalities that are consistent with the properties of the chosen biomaterials, thereby unlocking numerous potential applications in biomedicine due to the inherent biocompatibility of these building blocks. This review focuses on reported models of artificial cells constructed by various methods, encompassing a diverse array of biomolecular building blocks, including lipid and phospholipid-based structures (such as liposomes and giant unilamellar vesicles), polysaccharide-based structures (polysaccharidosomes), protein-based structures (proteinosomes), polymer-based structures (polymersomes), and colloidal particle-based structures (colloidosomes). Additionally, the current applications of these artificial cells are also explored, highlighting their roles as biological carriers, micro-reactors, biosensors, and signal regulators, with a particular emphasis on their use in medical diagnostics and therapeutic interventions.
Key words:  artificial cell    vesicle    biomedical application    diagnosis and treatment
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52150410403)
通讯作者:  *窦红静,博士,上海交通大学材料科学与工程学院教授、博士研究生导师。目前主要从事仿细胞材料、药物载体材料和大分子自组装材料等方面的研究。hjdou@sjtu.edu.cn   
作者简介:  李家奇,上海交通大学材料科学与工程学院博士研究生,在窦红静教授的指导下进行原始生命材料相关研究。
引用本文:    
李家奇, 窦红静. 人工细胞的构筑及生物医学应用[J]. 材料导报, 2025, 39(5): 24080236-13.
LI Jiaqi, DOU Hongjing. Construction of Artificial Cells and Their Biomedical Application. Materials Reports, 2025, 39(5): 24080236-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080236  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24080236
1 Jiang W, Wu Z, Shen J, et al. ACS Nano, 2022, 16(10), 15705.
2 Chang Thomas M S. 1957 Report on “method for preparing artificial hemoglobin corpuscles”. BSc Thesis, McGill University, CA, 1957.
3 Jeong S, Nguyen H T, Kim C H, et al. Advanced Functional Materials, 2020, 30(11), 1907182.
4 Chang H Y, Sheng Y J, Tsao H K. Soft Matter, 2014, 10(34), 6373.
5 Paola Albanese, Fabio Mavelli, Emiliano Altamura. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1161730.
6 Xu C, Hu S, Chen X. Materials Today, 2016(19), 516.
7 Cai X, Jian M, Zhou S, et al. Progress in Chemistry, 2022, 34(11), 2462(in Chinese).
蔡雪儿, 简美玲, 周少红, 等. 化学进展, 2022, 34(11), 2462.
8 Hutchison C A Ⅲ, Chuang R Y, Noskov V N, et al. Science, 2016, 351(6280), aad6253.
9 Mann S. Accounts of Chemical Research, 2012, 45(12), 2131.
10 Avery O T, Macleod C M, McCarty M. Journal of Experimental Medicine, 1944, 79(2), 137.
11 Claire M, Gocayne J D, White O, et al. Science, 1995, 270, 397.
12 Gil R, Silva F J, Peretó J, et al. Microbiology and Molecular Biology Reviews, 2004, 68(3), 518.
13 Luisi P L, Ferri F, Stano P. Naturwissenschaften, 2006, 93(1), 1.
14 Gibson D G, Glass J I, Venter J C, et al. Science, 2010, 329(5987), 52.
15 Pelletier J F, Sun L, Wise K S, et al. Cell, 2021, 184(9), 2430.
16 Cello J, Paul A V, Wimmer E. Science, 2002, 297(5583), 1016.
17 van Swaay D, deMello A. Lab Chip, 2013, 13(5), 752.
18 Meierhenrich U J, Filippi J J, Dworkin J, et al. Angewandte Chemie International Edition, 2010, 49, 3738.
19 Szoka Jr F, Papahadjopoulos D. Annual Review of Biophysics, 1980, 9, 467.
20 Huang X, Li M, Green D C, et al. Nature Communications, 2013, 4, 2239.
21 Peters R J, Marguet M, Lecommandoux S, et al. Angewandte Chemie International Edition, 2014, 53(1), 146.
22 Martino C, Kim S H, Weitz D A, et al. Angewandte Chemie International Edition, 2012, 51, 6416.
23 Tamate R, Ueki T, Yoshida R. Advanced Materials, 2015, 27, 837.
24 Li M, Huang X, Mann S, et al. Current Opinion in Chemical Biology, 2014, 22, 1.
25 Dzieciol A J, Mann S. Chemical Society Reviews, 2012, 41(1), 79.
26 Walde P, Cosentino K, Stano P. et al. Chembiochem, 2010, 11(7), 848.
27 Angelova M I, Dimiter D S. Faraday Discussions of the Chemical Society, 1986, 81, 303.
28 Herianto S, Chien P J, Tu H L, et al. Biomaterials Advances, 2022, 142, 213156.
29 Reeves J P, Dowben R M. Journal of Cellular Physiology, 1969, 73(1), 49.
30 Patil Y P, Jadhav S. Chemistry and Physics of Lipids, 2014, 177, 8.
31 Lu Y, Allegri G, Huskens J. Materials Horizons, 2021, 9, 892.
32 Dimitrov D, Angelova M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 253, 323.
33 Kamiya K, Takeuchi S. Journal of Materials Chemistry B, 2017, 5, 5911.
34 Pautot S, Barbara J, Weitz D A, et al. Langmuir, 2003, 19(7), 2870.
35 Trantidou T, Friddin M, Ces O, et al. ACS Nano, 2017, 11(7), 6549.
36 Stein H, Spindler S, Sandoghdar V, et al. Frontiers in Physiology, 2017, 8, 63.
37 Montes L R, Alonso A, Goni F M, et al. Biophysical Journal, 2007, 93(10), 3548.
38 Feng B, Zhou F, Yu H, et al. Biomaterials Science, 2017, 5, 1522.
39 Pautot S, Frisken B J, Weitz D A. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19), 10718.
40 Hu P C, Malmstadt N. Biophysical Journal, 2011, 100(3), 169a.
41 Gañán-Calvo A, González-Prieto R, Flores-Mosquera M, et al. Nature Physics, 2007, 3, 737.
42 Cistola D P, Hamilton J A, Small D M, et al. Biochemistry, 1988, 27(6), 1881.
43 Chechetka S A, Yuba E, Miyako E, et al. Angewandte Chemie International Edition, 2016, 55(22), 6476.
44 Kundu N, Mondal D, Sarkar N. Biophysical Reviews, 2020, 12(5), 1117.
45 Wang X, Tian L, Mann S, et al. Chemical Science, 2019, 10(41), 9446.
46 Mukwaya V, Zhang P, Dou H, et al. ACS Nano, 2020, 14(7), 7899.
47 Xie Y L, Wang M J, Yao S J. Langmuir, 2009, 25(16), 8999.
48 Jia Y, Fei J, Li J, et al. Chemical Communications, 2011, 47(4), 1175.
49 Ugrinic M, Zambrano A, de Mello A, et al. Chemical Communications, 2018, 54(3), 287.
50 Kuan S L, Bergamini F R G, Weil T. Chemical Society Reviews, 2018, 47(24), 9069.
51 Rawlings A E, Bramble J P, Staniland S S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45), 16094.
52 Gobbo P, Patil A J, Li M, et al. Nature Materials, 2018, 17, 1145.
53 Zhou P, Liu X, Huang X, et al. ACS Macro Letters, 2016, 5(8), 961.
54 Rideau E, Dimova R, Landfester K, et al. Chemical Society Reviews, 2018, 47(23), 8572.
55 Dos Santos E C, Angelini A, Palivan C G, et al. Chemistry, 2020, 2(2), 470.
56 Palivan C G, Goers R, Meier W, et al. Chemical Society Reviews, 2016, 45(2), 377.
57 Belluati A, Thamboo S, Meier W, et al. Advanced Functional Materials, 2020, 30, 2002949.
58 Thamboo S, Najer A, Palivan C G, et al. Advanced Functional Materials, 2019, 29, 1904267.
59 Dimova Rumiana, Carlos Marques. The giant vesicle book, CRC Press, US, 2019, pp.40.
60 Garni M, Thamboo S, Palivan C G, et al. Biochimica et Biophysica Acta, 2017, 1859(4), 619.
61 Maffeis V, Heuberger L, Palivan C G, et al. Advanced Science, 2024, 11, 2305837.
62 Dou H, Li M, Qiao Y, et al. Nature Communications, 2017, 8, 426.
63 You J, Qian Y, Dou H, et al. Chemistry-A European Journal, 2024, 30, e202401435.
64 Park J H, Galanti A, Gobbo P, et al. European Journal of Organic Chemistry, 2022, 43, 59.
65 Gañán-Calvo A M, Gordillo J M. Physical Review Letters, 2001, 87, 274501.
66 Dinsmore A D, Hsu M F, Weitz D A, et al. Science, 2002, 298, 1006.
67 Cabral H, Miyata K, Osada K, et al. Chemical Reviews, 2018, 118(14), 6844.
68 Yewdall, N A, Spruijt E, et al. Current Opinion in Colloid & Interface Science, 2021, 52, 101416.
69 Vanswaay D, Tang T Y D, DeMello A, et al. Angewandte Chemie International Edition, 2015, 54, 8398.
70 Delvart A. Adsorption properties of functionalized α-glucans for the elaboration of innovative biobased materials. Ph. D. Thesis, Nantes Université, France, 2022.
71 Cook A B, Novosedlik S, van Hest J C M. Accounts of Materials Research, 2023, 4(3), 287.
72 Shin Y, Brangwynne C P. Science, 2017, 357(6357), eaaf4382.
73 Mason A F, Buddingh’ B C, van Hest J C M, et al. Journal of the Ame-rican Chemical Society, 2017, 139(48), 17309.
74 Dora Tang T Y, Rohaida C H C, Mann S, et al. Nature Chemistry, 2014, 6(6), 527.
75 Williams D S, Patil A J, Mann S, et al. Small, 2014, 10(9), 1830.
76 Booth R, Qiao Y, Mann S, et al. Angewandte Chemie International Edition, 2019, 58(27), 9120.
77 Mu W, Ji Z, Qiao Y, et al. Science Advances, 2021, 7(22), eabf9000.
78 Zhang Y, Chen Y, Mann S, et al. Journal of the American Chemical Society, 2021, 143(7), 2866.
79 Seo H, Lee H. Nature Communications, 2022, 13(1), 5179.
80 Allen M E, Hindley J W, Elani Y, et al. Nature Reviews Chemistry, 2022, 6(8), 562.
81 Sato Y, Takinoue M. JACS Au, 2021, 2(1), 159.
82 Margolis L, Sadovsky Y. PLOS Biology, 2019, 17(7), e3000363.
83 Lentini R, Santero S, Chizzolini F, et al. Nature Communications, 2014, 5, 4012.
84 Elani Y, Trantidou T, Ces O, et al. Scientific Reports, 2018, 8(1), 4564.
85 Xu C, Martin N, Li M, et al. Nature, 2022, 609(7929), 1029.
86 Chang T M. Artificial Cells, Blood Substitutes, and Biotechnology, 2007, 35(6), 545.
87 Krinsky N, Kaduri M, Zinger A, et al. Advanced Healthcare Materials, 2018, 7(9), 1701163.
88 Fathi K S, Mohammadhosseini M, Davaran S, et al. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1), 1.
89 Bedau M A, McCaskill J S, Packard N H, et al. Artificial Life, 2010, 16(1), 89.
90 Elani Y, Law R V, Ces O. Nature Communications, 2014, 5(1), 5305.
91 Omidvar M, Zdarta J, Sigurdardóttir S B, et al. Biotechnology Advances, 2022, 54, 107798.
92 Lin C, Zhang Q X, Yeh Y C. Analytical Methods, 2019, 11(10), 1400.
93 Ahmad T, Iqbal A, Al-Harrasi A. et al. Nanomaterials (Basel), 2022, 12(9), 1475.
94 Deng S, Gu J, Cai K, et al. Journal of Nanobiotechnology, 2022, 20(1), 415.
95 Charalambous K, Booth P J, Ces O, et al. Journal of the American Che-mical Society, 2012, 134(13), 5746.
96 Hindley J W, Zheleva D G, Ces O, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34), 16711.
97 Yang Qiuxia, Guo Zhenzhen, Tan Weihong. Journal of the American Chemical Society, 2021, 143(1), 232.
98 Buddingh’ B C, Elzinga J, van Hest J C M. Nature Communications, 2020, 11(1), 1652.
99 Niederholtmeyer H, Chaggan C, Devaraj N K. Nature Communications, 2018, 9(1), 5027.
100 Kamiya K, Kawano R, Takeuchi S, et al. Nature Chemistry, 2016, 8(9), 881.
101 Zhao X, Tang D, Wang C, et al. Nanoscale, 2020, 12(18), 10189.
102 Waeterschoot J, Gosselé W, Casadevall I, et al. Nature Communications, 2024, 15(1), 2504.
103 Vincy A, Mazumder S, Vankayala R, et al. Frontiers in Chemistry, 2022, 10, 905256.
104 Glassman P M, Hood E D, Muzykantov V R, et al. Advanced Drug Delivery Reviews, 2021, 178, 113992.
105 Hu C M, Fang R H, Zhang L. Advanced Healthcare Materials, 2012, 1(5), 537.
106 Hou K, Zhang Y, Wang Z, et al. ACS Applied Materials & Interfaces, 2022, 14(3), 3825.
107 Liu W L, Liu T, Zhang X Z, et al. Advanced Materials, 2018, 30(35), e1802006.
108 Kaouass M, Beaulieu R, Balicki D. Journal of Controlled Release, 2006, 113(3), 245.
109 Ni J, Sun Y, Li X, et al. ACS Omega, 2019, 4(7), 12727.
110 Jin W, Lin X, Tang R, et al. Nature Communications, 2021, 12(1), 6327.
111 Ai Y, Xie R, Liang Q, et al. Small, 2020, 16(9), e1903940.
112 Yang C, Kong L, Zhang Z. Nano Today, 2022, 44, 101481.
113 Nomura S M, Tsumoto K, Yoshikawa K, et al. Chembiochem, 2003, 4(11), 1172.
114 Elani Y, Law R V, Ces O. Physical Chemistry Chemical Physics, 2015, 17(24), 15534.
115 van Raad D, Huber T. ACS Synthetic Biology, 2021, 10(5), 1237.
116 Xie M, Ye H, Fussenegger M, et al. Science, 2016, 354(6317), 1296.
117 Hu Q, Lan H, Zhang Z, et al. Journal of Controlled Release, 2024, 365, 176.
118 Liu S, Zhang Y, Li M, et al. Nature Chemistry, 2020, 12, 1165.
119 Wang L, Song S, Sánchez S, et al. Small, 2020, 16(27), e1907680.
120 Mukwaya V, Zhang P, Dou H, et al. Cell Reports Physical Science, 2021, 2(1), 100291.
121 Hou F, Guo Z, Zhao C X, et al. ACS Nano, 2024, 18(12), 8571.
122 Shields C W, Wang L L, Evans M A, et al. Advanced Materials, 2020, 32(13), e1901633.
123 Eggermont L J, Paulis L E, Figdor C G, et al. Trends in Biotechnology, 2014, 32(9), 456.
124 Meyer R A, Sunshine J C, Green J J, et al. Small, 2015, 11(13), 1519.
125 Le Q V, Lee J, Oh Y K, et al. Bioactive Materials, 2021, 15, 160.
126 López-Cantillo G, Urueña C, Ramírez-Segura C, et al. Frontiers in Immunology, 2022, 13, 878209.
127 Schwarz-Schilling M, Aufinger L, Simmel F C, et al. Integrative Biology, 2016, 8(4), 564.
128 Ding Y, Contreras-Llano L E, Tan C, et al. ACS Applied Materials & Interfaces, 2018, 10(36), 30137.
129 Granieri L, Baret J C, Merten C A, et al. Chemical Biology, 2010, 17(3), 229.
130 Kunding A H, Mortensen M W, Stamou D, et al. Biophysical Journal, 2008, 95(3), 1176.
131 Woo Y, Heo Y, Yi G R, et al. Journal of Biomedical Nanotechnology, 2013, 9(4), 610.
132 Tsuji G, Fujii S, Yomo T, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3), 590.
133 Lu T, Liese S, Spruijt E, et al. Journal of the American Chemical Society, 2022, 144(30), 13451.
134 Naz M, Mukwaya V, Dou H, et al. Advanced Functional Materials, 2024, 34, 2405781.
[1] 王宛滢, 李宁, 宋子元. 刺激响应性聚氨基酸材料的设计与应用[J]. 材料导报, 2025, 39(5): 24080169-13.
[2] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed