Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020093-15    https://doi.org/10.11896/cldb.22020093
  无机非金属及其复合材料 |
氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用
陈斐1,2,*, RannalterLeana Ziwen2, 宋尚斌1,2, 曹诗雨1,2, 沈强2
1 武汉理工大学深圳研究院,广东 深圳 518063
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Three-dimensional Structural Design in Oxide Solid Electrolytes and Its Application in All-Solid-State Lithium-ion Batteries
CHEN Fei1,2,*, Rannalter Leana Ziwen2, SONG Shangbin1,2, CAO Shiyu1,2, SHEN Qiang2
1 Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518063, Guangdong, China
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 80447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比于传统锂离子电池,全固态锂电池在安全性、能量密度和工作温度范围等方面具有显著优势,研究并开发固体电解质是突破锂电池的技术瓶颈和进一步产业化发展的关键步骤。针对目前聚合物复合电解质中的颗粒填料团聚以及固体电解质/电极界面中存在的问题,该领域涌现了一批具有创新性的无机固体电解质结构设计。本文首先对基于三维氧化物固体电解质框架的复合电解质中的离子传输途径进行了概括性的讨论,阐述了电解质的结构可能对离子传输带来的影响。文章重点介绍了近年来对氧化物固体电解质的三维框架结构设计和应用及其制备方法,详述了不同的电解质框架结构对电池电化学性能方面的优化策略并对电池性能进行了比较。三维电解质框架除了可以作为复合电解质的基体外,也可以将电极材料填入其中,使其作为复合电极的基体,为电极与电解质之间提供了一种新的接触形式,以解决电极的体积变化和锂枝晶生长问题。文章在最后对设计思路以及仍面临的挑战进行了总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈斐
RannalterLeana Ziwen
宋尚斌
曹诗雨
沈强
关键词:  复合固体电解质  三维框架  锂离子电导率  全固态电池  多孔材料    
Abstract: Due to the advantages of all-solid-state lithium batteries in safety, energy density and working temperature range, the development of solid electrolytes is a crucial step to breaking through the technical bottleneck of lithium batteries and further industrialization. Because of the problems of filler particle agglomeration in composite electrolytes and electrolyte/electrode interfaces, several innovative inorganic electrolyte designs have recently been proposed. This review paper begins with a brief discussion of ion transport pathways in a composite electrolyte based on a three-dimensional oxide solid electrolyte framework, describing the effects that the electrolyte structure may have on ion transport. The designs and application of different types of 3D framework structures of oxide solid electrolyte reported in recent years, together with their preparation methods are then highlighted. We also detail the optimization strategies of the different designs of the structure for the electrochemical perfor-mance of the batteries and make a comparison between them. The 3D oxide solid electrolyte framework can not only be used as the matrix of composite electrolyte but also be filled with electrode materials to form a composite electrode, which provides a new contact form between the electrode and the electrolyte, aiming to solve the problems of volume change and lithium dendrite growth. At the end of this review, the design ideas and ongoing challenges are summarized.
Key words:  composite solid electrolyte    three-dimensional framework    Li+ conductivity    all-solid-state lithium battery    porous material
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TM912  
基金资助: 广东省基础与应用基础研究重大项目(2021B0301030001);深圳市科技计划项目(JCYJ20190809153405505);国家自然科学基金项目(51972246;51521001);国家重点研发计划 (2018YFB0905600);中央高校基本科研业务费专项资金;“111” 工程 (B13035)
通讯作者:  *陈斐,武汉理工大学教授、博士研究生导师。2004年6月在武汉理工大学获得工学学士学位,2009年6月在武汉理工大学获得工学博士学位。长期从事功能梯度材料及其在能量转换与存储中的应用研究。主持国家重点研发计划、国家自然科学基金、中央军委科技委创新特区项目装备预研领域基金等10余项科研项目。获国家发明专利21项,发表研究论文150余篇,包括Nature Energy、Journal of Power Sources、ACS Applied Nano Mate-rials、ACS Applied Materials Interfaces、Journal of the American Ceramic Society等。chenfei027@whut.edu.cn   
引用本文:    
陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
CHEN Fei, Rannalter Leana Ziwen, SONG Shangbin, CAO Shiyu, SHEN Qiang. Three-dimensional Structural Design in Oxide Solid Electrolytes and Its Application in All-Solid-State Lithium-ion Batteries. Materials Reports, 2023, 37(19): 22020093-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020093  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020093
1 Wang Y, Zhong W H. ChemElectroChem, 2015, 2(1), 22.
2 Janek J, Zeier W G. Nature Energy, 2016, 1, 16141.
3 Ramakumar S, Deviannapoorani C, Dhivya L, et al. Progress in Materials Science, 2017, 88, 325.
4 Zhao X D, Zhu W, Li J R, et al. Materials Reports, 2014, 28(4), 13 (in Chinese).
赵旭东, 朱文, 李镜人, 等. 材料导报, 2014, 28(4), 13.
5 Zhang Z Z, Shao Y J, Lotsch B, et al. Energy & Environmental Science, 2018, 11(8), 1945.
6 Tang W J, Tang S, Zhang C J, et al. Advanced Energy Materials, 2018, 8(24), 1800866.
7 Balazs A C, Emrick T, Russell T P. Science, 2006, 314(5802), 1107.
8 Zhang D, Xu X, Qin Y, et al. Chemistry, 2020, 26(8), 1720.
9 Wang Z X, Huang X J, Chen L Q. Electrochemical and Solid-State Letters, 2003, 6(11), E40.
10 Masoud E M, El-Bellihi A A, Bayoumy W A, et al. Journal of Alloys and Compounds, 2013, 575, 223.
11 Ahmad S, Saxena T K, Ahmad S, et al. Journal of Power Sources, 2006, 159(1), 205.
12 Chiang C. Solid State Ionics, 2004, 175(1-4), 631.
13 Zhu Y H, Cao J, Chen H, et al. Journal of Materials Chemistry A, 2019, 7(12), 6832.
14 Ketabi S, Lian K. Electrochimica Acta, 2013, 103, 174.
15 Kim J W, Ji K S, Lee J P, et al. Journal of Power Sources, 2003, 119, 415.
16 Li J, Zhu K J, Yao Z R, et al. Ionics, 2019, 26(3), 1101.
17 Keller M, Appetecchi G B, Kim G T, et al. Journal of Power Sources, 2017, 353, 287.
18 He Z J, Chen L, Zhang B C, et al. Journal of Power Sources, 2018, 392, 232.
19 Zhu L, Zhu P H, Fang Q X, et al. Electrochimica Acta, 2018, 292, 718.
20 Milian P C R, Cappe E P, Mohallem N D S, et al. Solid State Sciences, 2019, 88, 41.
21 Jung Y C, Park M S, Doh C H, et al. Electrochimica Acta, 2016, 218, 271.
22 Guo Q, Han Y, Wang H, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 41837.
23 Li C l, Wang J, Chang Z W, et al. Scientia Sinica Chimica, 2018, 48(8), 964.
24 Liu L H, Chu L H, Jiang B, et al. Solid State Ionics, 2019, 331, 89.
25 Wang W M, Yi E, Fici A J, et al. The Journal of Physical Chemistry C, 2017, 121(5), 2563.
26 Jung Y C, Lee S M, Choi J H, et al. Journal of the Electrochemical Society, 2015, 162(4), A704.
27 Scrosati B, Croce F, Persi L. Journal of the Electrochemical Society, 2000, 147(5), 1718.
28 Zha W P, Chen F, Yang D J, et al. Journal of Power Sources, 2018, 397, 87.
29 Borkowska R, Reda A, Zalewska A, et al. Electrochimica Acta, 2001, 46(10-11), 1737.
30 Wieczorek W. Solid State Ionics, 1996, 85(1-4), 67.
31 Croce F, Persi L, Scrosati B, et al. Electrochimica Acta, 2001, 46(16), 2457.
32 Zhang J X, Zhao N, Zhang M, et al. Nano Energy, 2016, 28, 447.
33 Yu X R, Ma J, Mou C B, et al. Acta Physico-Chemica Sinica, 2020, 36, 1912061 (in Chinese).
虞鑫润, 马君, 牟春博, 等. 物理化学学报, 2020, 36, 1912061.
34 Kitajima S, Kitaura H, Im D, et al. Solid State Ionics, 2018, 316, 29.
35 Zhang X, Xu B Q, Lin Y H, et al. Solid State Ionics, 2018, 327, 32.
36 Zaman W, Hortance N, Dixit M B, et al. Journal of Materials Chemistry A, 2019, 7(41), 23914.
37 Huang Z Y, Pang W Y, Liang P, et al. Journal of Materials Chemistry A, 2019, 7(27), 16425.
38 Syzdek J S, Armand M B, Falkowski P, et al. Chemistry of Materials, 2011, 23(7), 1785.
39 Castriota M, Teeters D. Ionics, 2005, 11(3-4), 220.
40 Bishop C, Teeters D. Electrochimica Acta, 2009, 54(16), 4084.
41 Syzdek J, Armand M, Gizowska M, et al. Journal of Power Sources, 2009, 194(1), 66.
42 Li Y, Zhou W, Chen X, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47), 13313.
43 Porz L, Swamy T, Sheldon B W, et al. Advanced Energy Materials, 2017, 7(20), 1701003.
44 Yao S Y, Zeng L Y, Liu J. Materials Reports, 2022, 36(16), 192 (in Chinese).
姚诗言, 曾立艳, 刘军. 材料导报, 2022, 36(16), 192.
45 Zhang D, Liu Z, Wu Y, et al. Advanced Science (Weinh), 2022, 9(12), e2104277.
46 Zhang D C, Xu X J, Huang X Y, et al. Journal of Materials Chemistry A, 2020, 8(35), 18043.
47 Ye F, Zhang X, Liao K M, et al. Journal of Materials Chemistry A, 2020, 8(19), 9733.
48 Chen X Z, He W J, Ding L X, et al. Energy & Environmental Science, 2019, 12(3), 938.
49 Zheng B Z, Wang H C, Gong Z L, et al. Scientia Sinica Chimica, 2017, 47(5), 579.
50 Wang H, An H W, Shan H M, et al. Acta Physico Chimica Sinica, 2020, 36, 2007070.
51 Du M J, Sun Y, Liu B, et al. Advanced Functional Materials, 2021, 31 (31), 2101556
52 Du M J, Liao K M, Lu Q, et al. Energy & Environmental Science, 2019, 12(6), 1780.
53 Chen L, Li Y T, Li S P, et al. Nano Energy, 2018, 46, 176.
54 Gupta A, Sakamoto J. The Electrochemical Society Interface, 2019, 28(2), 63.
55 Cheng S H S, He K Q, Liu Y, et al. Electrochimica Acta, 2017, 253, 430.
56 Zheng J, Tang M X, Hu Y Y. Angewandte Chemie-International Edition, 2016, 55(40), 12538.
57 Zheng J, Hu Y Y. ACS Applied Materials & Interfaces, 2018, 10(4), 4113.
58 Zheng J, Wang P B, Liu H Y, et al. ACS Applied Energy Materials, 2019, 2(2), 1452.
59 Zagórski J, López del Amo J M, Cordill M J, et al. ACS Applied Energy Materials, 2019, 2(3), 1734.
60 Li Z, Huang H M, Zhu J K, et al. ACS Applied Materials & Interfaces, 2019, 11(1), 784.
61 Roman H E, Bunde A, Dieterich W. Physical Review B:Condensed Matter and Materials Physics, 1986, 34(5), 3439.
62 Yamada H, Bhattacharyya A J, Maier J. Advanced Functional Materials, 2006, 16(4), 525.
63 Liu W, Liu N, Sun J, et al. Nano Letters, 2015, 15(4), 2740.
64 Zhang X, Xie J, Shi F, et al. Nano Letters, 2018, 18(6), 3829.
65 La Monaca A, Paolella A, Guerfi A, et al. Electrochemistry Communications, 2019, 104, 106483.
66 Rosenthal T, Weller J M, Chan C K. Industrial & Engineering Chemistry Research, 2019, 58(37), 17399.
67 Zhang X W, Ji L W, Toprakci O, et al. Polymer Reviews, 2011, 51(3), 239.
68 Wang H G, Yuan S, Ma D L, et al. Energy & Environmental Science, 2015, 8(6), 1660.
69 Gu Y, Chen D, Jiao X. Journal of Physical Chemistry B, 2005, 109(38), 17901.
70 Aravindan V, Sundaramurthy J, Kumar P S, et al. Nanoscale, 2013, 5(21), 10636.
71 Jo M R, Jung Y S, Kang Y M. Nanoscale, 2012, 4(21), 6870.
72 Zhao Y, Yan J H, Cai W P, et al. Energy Storage Materials, 2019, 23, 306.
73 Zhou D, He Y B, Liu R L, et al. Advanced Energy Materials, 2015, 5(15), 1500353.
74 Zhang D, Xu X, Ji S, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 21586.
75 Yang T, Gordon Z D, Li Y, et al. The Journal of Physical Chemistry C, 2015, 119(27), 14947.
76 Zhu P, Yan C Y, Dirican M, et al. Journal of Materials Chemistry A, 2018, 6(10), 4279.
77 Li D, Chen L, Wang T, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7069.
78 Fu K K, Gong Y, Dai J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26), 7094.
79 Wang X, Zhang Y, Zhang X, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24791.
80 Yang H, Bright J, Chen B, et al. Journal of Materials Chemistry A, 2020, 8(15), 7261.
81 Studart A R, Gonzenbach U T, Tervoort E, et al. Journal of the American Ceramic Society, 2006, 89 (6), 1771.
82 Bae J, Li Y, Zhang J, et al. Angewandte Chemie International Edition, 2018, 57(8), 2096.
83 Bae J, Li Y T, Zhao F, et al. Energy Storage Materials, 2018, 15, 46.
84 Fu X L, Li Y C, Liao C Z, et al. Composites Science and Technology, 2019, 184, 107863.
85 Li Z, Sha W X, Guo X. ACS Applied Materials & Interfaces, 2019, 11(30), 26920.
86 Cai D, Wang D H, Chen Y J, et al. Chemical Engineering Journal, 2020, 394, 124993.
87 Zekoll S, Marriner-Edwards C, Hekselman A K O, et al. Energy & Environmental Science, 2018, 11(1), 185.
88 Wang X, Wang T Y, Borovilas J, et al. Nano Research, 2019, 12(9), 2002.
89 Dai J Q, Fu K, Gong Y H, et al. ACS Materials Letters, 2019, 1(3), 354.
90 Wang X, Zhai H W, Qie B Y, et al. Nano Energy, 2019, 60, 205.
91 Zhai H W, Xu P Y, Ning M Q, et al. Nano Letters, 2017, 17(5), 3182.
92 Buannic L, Naviroj M, Miller S M, et al. Journal of the American Ceramic Society, 2019, 102(3), 1021.
93 Liu C, Wang J X, Kou W J, et al. Chemical Engineering Journal, 2021, 404, 126517.
94 Cui J, Zhou Z, Jia M, et al. Polymers (Basel), 2020, 12(6), 1324.
95 Xie H, Yang C P, Fu K K, et al. Advanced Energy Materials, 2018, 8(18), 1703474.
96 Yan C Y, Zhu P, Jia H, et al. Advanced Fiber Materials, 2019, 1(1), 46.
97 Karthik K, Din M M U, Jayabalan A D, et al. Materials Today Energy, 2020, 16, 100389.
98 Hu J K, He P G, Zhang B C, et al. Energy Storage Materials, 2020, 26, 283.
99 Lin D, Yuen P Y, Liu Y, et al. Advanced Materials, 2018, 30(32), e1802661.
100 Jiang T L, He P G, Wang G X, et al. Advanced Energy Materials, 2020, 1903376.
101 Palmer M J, Kalnaus S, Dixit M B, et al. Energy Storage Materials, 2020, 26, 242.
102 Li R G, Guo S T, Yu L, et al. Advanced Materials Interfaces, 2019, 6(10), 1900200.
103 Peng X, Huang K, Song S P, et al. ChemElectroChem, 2020, 7(11), 2389.
104 Zhang H, An X, Lu Z, et al. Journal of Power Sources, 2020, 477, 228752.
105 Liu K, Wu M C, Wei L, et al. Journal of Membrane Science, 2020, 610, 118265.
106 Wan J, Xie J, Kong X, et al. Nature Nanotechnology, 2019, 14(7), 705.
107 Jiang Z Y, Xie H Q, Wang S Q, et al. Advanced Energy Materials, 2018, 8(27), 1801433.
108 Arthur T S, Bates D J, Cirigliano N, et al. MRS Bulletin, 2011, 36(7), 523.
109 Li Y, Zhang D C, Xu X J, et al. Journal of Energy Chemistry, 2021, 60, 32.
110 Talin A A, Ruzmetov D, Kolmakov A, et al. ACS Applied Materials & Interfaces, 2016, 8(47), 32385.
111 Ni S Y, Tan S S, An Q Y, et al. Journal of Energy Chemistry, 2020, 44, 73.
112 van den Broek J, Afyon S, Rupp J L M. Advanced Energy Materials, 2016, 6(19), 1600736.
113 Yang C, Zhang L, Liu B, et al. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15), 3770.
114 Liu B Y, Zhang L, Xu S M, et al. Energy Storage Materials, 2018, 14, 376.
115 Xu S M, McOwen D W, Zhang L, et al. Energy Storage Materials, 2018, 15, 458.
116 Gong Y, Fu K, Xu S M, et al. Materials Today, 2018, 21(6), 594.
117 Xu S, McOwen D W, Wang C, et al. Nano Letters, 2018, 18(6), 3926.
118 Wang C, Gong Y, Liu B, et al. Nano Letters, 2017, 17(1), 565.
119 Kotobuki M, Suzuki Y, Munakata H, et al. Journal of the Electroche-mical Society, 2010, 157(4), A493.
120 Yi E, Shen H, Heywood S, et al. ACS Applied Energy Materials, 2020, 3(1), 170.
121 Shen H, Yi E, Heywood S, et al. ACS Applied Materials & Interfaces, 2020, 12(3), 3494.
122 McOwen D W, Xu S, Gong Y, et al. Advanced Materials, 2018, 30(18), e1707132.
[1] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[2] 黄世杰, 赵春霞, 王硕, 黄浩然, 李嘉鑫, 李辉, 向东, 李云涛. 聚苯乙烯/α-磷酸锆多孔材料制备及油水乳液分离研究[J]. 材料导报, 2023, 37(16): 21110076-9.
[3] 秦若男, 果春焕, 李艳春, 邵帅齐, 姜风春. 多孔金属材料阻尼性能的研究进展[J]. 材料导报, 2023, 37(15): 21100001-10.
[4] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[5] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[6] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[7] 于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
[8] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[9] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[10] 周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049.
[11] 邱军科, 王朋, 张迪, 石林, 张凰. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13): 13028-13035.
[12] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[13] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[14] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[15] 戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed