Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 822-827    https://doi.org/10.11896/j.issn.1005-023X.2018.05.019
  材料综述 |
柱胞夹芯复合材料设计加工及吸能性能研究现状
戎翔1, 邓安仲2, 李飞2, 李丰恺2
1 78322部队,普洱 665000;
2 陆军勤务学院军事设施系,重庆 401311
Column Cellular Sandwich Composite Material: Design, Processing and Energy Absorption Property
RONG Xiang1, DENG Anzhong2, LI Fei2, LI Fengkai2
1 Unit 78322, Puer 665000;
2 Department of Military Facilities, Army Logistic University of PLA, Chongqing 401311
下载:  全 文 ( PDF ) ( 1253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柱胞夹芯复合材料因其在吸能减振方面的优异性能以及比强度、比刚度高,被认为是新型吸能材料。为全面了解其在抗冲击吸能方面的优势,本文介绍了柱胞夹芯复合材料的基本概念;阐述了柱胞夹芯复合材料的吸能机理、吸能评估方法以及国内外设计的不同几何构型柱胞单元;分析了填充多孔材料对柱胞单元吸能性能的增强机理;概述了柱胞夹芯复合材料的不同加工工艺,比较各种加工工艺的优缺点及改进方法。文章最后对柱胞夹芯复合材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戎翔
邓安仲
李飞
李丰恺
关键词:  柱胞夹芯复合材料  吸能  多孔材料  加工工艺    
Abstract: Column cellular sandwich composite material is regarded as a new energy absorption materials based on its excellent performance in energy absorption, high strength, and high stiffness. To understand its advantages of energy absorption comprehensively, the basic concept of cellular sandwich composite materials is introduced firstly. The energy absorption mechanism and energy absorption evaluation method of column cellular sandwich composite are expounded, and the design of different geometric configurations of the column cell unit at home and abroad is described secondly. Then, the paper analyzes the enhancement mechanism of co-lumn cell unit after filling with porous materials. The different processing technology of column cellular sandwich composite materials is summarized.The advantages and disadvantages of all kinds of processing technology are compared, and the improvement method is proposed. The paper ends with a prospect of column cellular sandwich composites.
Key words:  column cellular sandwich composite material    energy absorption    porous material    processing technique
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(11372355);军队后勤重点科研计划(BY215J009)
通讯作者:  邓安仲:通信作者,男,1974年生,博士,教授,主要研究军事工程抢修抢建 E-mail:864881050@qq.com   
作者简介:  戎翔:男,1992年生,硕士研究生,主要研究抗爆吸能材料 E-mail:armandrx@outlook.com
引用本文:    
戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
RONG Xiang, DENG Anzhong, LI Fei, LI Fengkai. Column Cellular Sandwich Composite Material: Design, Processing and Energy Absorption Property. Materials Reports, 2018, 32(5): 822-827.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.019  或          http://www.mater-rep.com/CN/Y2018/V32/I5/822
1 金云平.指挥防护工程技术改造口部防护及防震问题[C]∥中国土木工程学会防护工程分会第五届理事会暨第九次学术会议.长春,2004:64.
2 Fang Qin, Gu Bo, Zhang Yadong. Numerical analysis in optimizing the structure of the steel door[J].Journal of PLA University of Science and Technology:Natural Science Edition,2006(6):557(in Chinese).
方秦,谷波,张亚栋.钢结构防护门结构优化的数值分析[J].解放军理工大学学报:自然科学版,2006(6):557.
3 Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J].Quarterly Journal of Mechanics & Applied Mathematics,1960,13(1):10.
4 Magee C L, Thornton P H. Design considerations in energy absorption by structural collapse[J].SAE Paper,1978,780434:15.
5 Wierzbicki T. Crushing analysis of metal honeycombs[J].International Journal of Impact Engineering,1983,1(83):157.
6 Abramowicz W, Jones N. Dynamic axial crushing of circular tubes[J].International Journal of Impact Engineering,1984,2(3):263.
7 Andrews K R F, England G L, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading[J].International Journal of Mechanical Sciences,1983,25(9-10):687.
8 Zhang Jian, Yin Qun. Study on anti-underwater explosion perfor-mance of tube sandwich plate[J].Journal of Noise and Vibration Control,2007(3):20(in Chinese).
张健,尹群.水下爆炸载荷下圆管夹心板的抗冲击性能研究[J].噪声与振动控制,2007(3):20.
9 Chen W, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J].Thin-Walled Structures,2001,39(4):287.
10 Chen W, Nardini D. Experimental study of crush behavior of sheet aluminum foam-filled sections[J].International Journal of Crashworthiness,2000,5(4):447.
11 Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J].Thin-Walled Structures,2002,40(4):311.
12 Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures[J].Thin-Walled Structures,2006,44(11):1185.
13 Hou S, Li Q, Long S, et al. Design optimization of regular hexago-nal thin-walled columns with crashworthiness criteria[J].Finite Elements in Analysis & Design,2007,43(67):555.
14 Yin H, Wen G, Liu Z, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures[J].Thin-Walled Structures,2014,75(75):8.
15 Updike D P. On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate[J].Journal of Manufacturing Science & Engineering,1972,94(3):949.
16 Updike D P, Kalnins A. Axisymmetric behavior of an elastic spherical shell compressed between rigid plates[J].Journal of Applied Mechanics,1970,37(3):635.
17 Gupta N K, Sheriff N M, Velmurugan R. Experimental and theore-tical studies on buckling of thin spherical shells under axial loads[J].International Journal of Mechanical Sciences,2008,50(3):422.
18 Gupta N K, Venkatesh. Experimental and numerical studies of dynamic axial compression of thin walled spherical shells[J].International Journal of Impact Engineering,2004,30(8-9):1225.
19 Zhang Wei,Yang Huiwei,Guan Wenbo,et al. Deformation of metallic thin-walled hollow spheres under dynamic compression[J].Journal of Engineering Mechanics,2016,33(2):242(in Chinese).
张威,杨会伟,管文博,等.冲击作用下薄壁金属空心球压缩变形研究[J].工程力学,2016,33(2):242.
20 Yu Wei, Li Huijian, Liang Xi, et al. The metal hemisphere shell compression mechanical properties of the experiment and simulation study[J].Journal of Engineering Mechanics,2013,30(11):260(in Chinese).
余为,李慧剑,梁希,等.金属半球壳压缩力学性能实验和模拟研究[J].工程力学,2013,30(11):260.
21 Dai Meiling, Liu Cong, Dai Yuntong,et al. Study on visualization of continuous deformation measurement of thin-walled spheres compressed by rigid ball[J].Acta Optica Sinica,2015(11):111(in Chinese).
戴美玲,刘聪,戴云彤,等.薄壁球壳受刚性球面压缩的可视化连续变形测量研究[J].光学学报,2015(11):111.
22 Wu Cheng, Zhang Xiangrong, Fang Yanhe, et al. Investigation on the dynamic displacement response of thin spherical aluminium shell under blasting shock loading of explosive charge[J].Transactions of Beijing Institute of Technology,2007,27(3):192(in Chinese).
吴成,张向荣,方延和,等.空中爆炸冲击波作用下薄壁铝球壳体大变形响应的实验研究[J].北京理工大学学报,2007,27(3):192.
23 Ghamarian A, Zarei H R, Abadi M T. Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes[J].Thin-Walled Structures,2011,49(10):1312.
24 Ghamarian A, Abadi M T. Axial crushing analysis of end-capped circular tubes[J].Thin-Walled Structures,2011,49(6):743.
25 Ghamarian A, Zarei H R, Farsi M A, et al. Experimental and numerical crashworthiness investigation of the empty and foam-filled conical tube with shallow spherical caps[J].Strain,2013,49(3):199.
26 Tasdemirci A, Sahin S, Kara A, et al. Crushing and energy absorption characteristics of combined geometry shells at quasi-static and dynamic strain rates: Experimental and numerical study[J].Thin-Walled Structures,2015,86:83.
27 Tasdemirci A, Kara A, Turan K, et al. Dynamic crushing and energy absorption of sandwich structures with combined geometry shell cores[J].Thin-Walled Structures,2015,91:116.
28 Tasdemirci A, Kara A, Turan K, et al. Effect of heat treatment on the blast loading response of combined geometry shell core sandwich structures[J].Thin-Walled Structures,2016,100:180.
29 Santosa S P, Wierzbicki T. Experimental and numerical studies of foam-filled sections[J].International Journal of Impact Engineering,2000,24(5):509.
30 Cao J, Khajepour A, Gan N, et al. Crashworthiness of functionally graded density aluminum foam-filled tapered thin-walled structures[J].Journal of Automotive Safety & Energy,2016,7(1):35.
31 Song H W, Fan Z J, Yu G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections[J].International Journal of Solids & Structures,2004,42(9):2575.
32 Wang Q, Fan Z, Gui L. A theoretical analysis for the dynamic axial crushing behaviour of aluminium foam-filled hat sections[J].International Journal of Solids & Structures,2006,43(7):2064.
33 Chen Zhen, Ruan Yi. Thin-wall metal tube parts processing techno-logy research[J].Mechanical and Electrical Engineering,2014(7):15(in Chinese).
陈珍,阮毅.薄壁金属管类零件加工工艺的研究[J].机电工程技术,2014(7):15.
34 Yuan Junrong. Study on the stamping simulation technology used in structure design of front panel upside[D].Changchun:Jilin University,2011(in Chinese).
袁俊荣.冲压成形数值模拟技术在前围上部结构设计中的应用研究[D].长春:吉林大学,2011.
35 张玉龙,李长德.塑料配方与制备手册[M].北京:化学工业出版社,2005:466.
36 Wang Miao, Wang Lucai. Research status and development prospects of aluminum foam and composite structures[J].Materials Review A:Review Papers,2015,29(3):81(in Chinese).
王淼,王录才.泡沫铝及其复合结构的制备和应用现状[J].材料导报:综述篇,2015,29(3):81.
37 Zhang Min, Zu Kuangying, Yao Guangchun,et al. Preparation of aluminum foam sandwich panels and their impact on performance study[J].Journal of Nonferrous Metal Engineering,2008,60(3):14(in Chinese).
张敏,祖国胤,姚广春,等.泡沫铝夹芯板制备及其冲击性能研究[J].有色金属工程,2008,60(3):14.
38 Zhao Hui. Metal welding technology and its application study[J].Journal of Electronics,2013(14):191(in Chinese).
赵辉.金属焊接技术及其应用探讨[J].电子制作,2013(14):191.
[1] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[2] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[3] 罗伟铭, 石少卿, 廖瑜, 孙建虎. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 《材料导报》期刊社, 2018, 32(8): 1328-1332.
[4] 刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
[5] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[6] 叶绍凤, 刘文贤, 徐喜连, 沙东勇, 施文慧, 曹澥宏. 金属-有机框架(MOFs)衍生材料及其在储能器件和电催化领域的应用[J]. 材料导报, 2018, 32(13): 2129-2142.
[7] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[8] 刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳. 新型多孔材料在惰性气体Xe/Kr分离中的应用*[J]. 《材料导报》期刊社, 2017, 31(19): 51-59.
[9] 罗伟铭, 石少卿, 陈自鹏, 孙建虎. 层间配置对成层式铝蜂窝吸能特性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 82-87.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed