Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 815-721    https://doi.org/10.11896/j.issn.1005-023X.2018.05.018
  材料综述 |
基于弹丸爆炸毁伤效应的复合材料与结构研究进展
尹德军1, 郑坚1, 熊超1, 殷军辉1, 刘云峰2
1 陆军工程大学石家庄校区, 石家庄 050003;
2 陆军重庆军代局驻9804厂军代室,曲靖 655000
Research Progress on Composite Materials and Structures Used for Protection Against Damage Effect of Projectile Explosion
YIN Dejun1,ZHENG Jian1,XIONG Chao1,YIN Junhui1,LIU Yunfeng2
1 Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003;
2 Military Representative Office in 9804 Factory, Military Representative Bureau of Army in Chongqing, Qujing 655000
下载:  全 文 ( PDF ) ( 2197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 军用地面装备的方舱化已成为当代不可逆转的发展趋势,但由于结构特点的限制,军用方舱的防护能力较弱。为了提高方舱在现代战争中的生存能力,基于弹丸爆炸毁伤效应的复合材料与结构的研究受到世界各军事强国的高度重视,得到了全面发展。弹丸爆炸的毁伤效应主要包括高速破片的侵彻效应与冲击波的破坏效应,文章回顾了军用方舱的发展历程,从防破片侵彻、防冲击波破坏以及防复合破坏效应等方面详细综述了复合材料与结构的研究进展和应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹德军
郑坚
熊超
殷军辉
刘云峰
关键词:  弹丸爆炸  军用方舱  毁伤效应  复合材料  防护结构    
Abstract: The army ground equipment upgraded to shelter has been an irreversible trend. Because of the structure characteristic of military shelter, its protection capability is very weak. In order to improve the survival ability of shelters in the war, the research of composite materials and structures based on damage effect of projectile explosion has been attached great importance and integrated development in the world military powers. The damage effect of projectile explosion mainly includes high speed fragment penetration and shock wave damage. This paper reviews the development history of military shelter. The development and application on the fragment penetration, shock wave damage and composite damage effect of the composite materials and structures are summarized.
Key words:  projectile explosion    military shelter    damage effect    composite material    protection structure
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB332  
基金资助: 军队重点公关项目(ZS2015070132A12002)
作者简介:  尹德军:男,1990年生,博士研究生,主要从事装备轻量化和防护材料领域的研究 E-mail:2544219238@qq.com
引用本文:    
尹德军, 郑坚, 熊超, 殷军辉, 刘云峰. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 815-721.
YIN Dejun, ZHENG Jian, XIONG Chao, YIN Junhui, LIU Yunfeng. Research Progress on Composite Materials and Structures Used for Protection Against Damage Effect of Projectile Explosion. Materials Reports, 2018, 32(5): 815-721.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.018  或          http://www.mater-rep.com/CN/Y2018/V32/I5/815
1 Zhang Zejiang. Study on fire-protection layer of blastproof and bulletproof square cabin for military use [J].Journal of Safety Science and Technology,2007,3(2):55(in Chinese).
张泽江.防爆防弹军用方舱防火保护层技术探讨[J].中国安全生产科学技术,2007,3(2):55.
2 Yan Guoqing. Corrosion resistance ability of military shelter[J].New Technology & New Process,2015(7):137(in Chinese).
闫国庆.浅谈军用方舱的抗腐蚀性能[J].新技术新工艺,2015(7):137.
3 Wei Rubin, Zhai Wen, Li Feng, et al. Application of high efficiency impact resistant composites in bulletproof and explosion proof shelter[J].Engineering Plastics Application,2016(4):131(in Chinese).
魏汝斌,翟文,李锋,等.高效抗冲击复合材料在防弹防爆方舱中的应用[J].工程塑料应用,2016(4):131.
4 Dai Youbin, Zhou Zaosheng, Zhang Shanggen, et al. Ultimate bea-ring capacity calculation and reinforcement analysis of square cabin under explosive impact load[J].Journal of Vibration and Shock,2006,25(3):127(in Chinese).
戴佑斌,周早生,张尚根,等.爆炸冲击载荷作用下方舱的极限承载力计算与加固分析[J].振动与冲击,2006,25(3):127.
5 Yin C, Chen Y Q, Zhong S M. Fractional-order sliding mode based extremum seeking control of a class of nonlinear system[J].Automatica,2014,50:3173.
6 Yue Tong, Hu Jing, Song Yu, et al. Hydraulic system design for a military shelter wall-plate display and closed[J].Machinery,2016(1):60(in Chinese).
岳通,胡靖,宋玉,等.某军用方舱车壁板展收液压系统设计[J].机械,2016(1):60.
7 Hu Qiushi, Zhao Feng. Spall control in the projectile explosive dri-ving[J].Chinese Journal of High Pressure Physics,2014(6):655(in Chinese).
胡秋实,赵锋.弹丸爆炸驱动过程中层裂控制的研究[J].高压物理学报,2014(6):655.
8 Huang X G, Zhang L, Zhao Z M, et al. Microstructure transformation and mechanical properties of TiC-TiB2 ceramics prepared by combustion synthesis in high gravity field[J].Materials Science and Engineering A,2012,553:105.
9 La Peiqing, Zhang Xiuping, Lu Xuefeng. Research status of nanocomposite ceramics fabrication techniques[J].Materials Review A:Review Papers,2009,23(7):25(in Chinese).
喇培清,张秀萍,卢学峰.纳米复相陶瓷制备技术的研究现状[J].材料导报:综述篇,2009,23(7):25.
10 Qiu H L, Zhang J, Zhu H M. Properties of Si3N4/BN composite ceramics by spark plasma sintering[J].China’s Refractories,2012,21(1):36.
11 Klement R, Rolc S, Mikulikova R, et al. Transparent armour materials[J].Journal of the European Ceramic Society,2008,28:1091.
12 Liu Sheng, Lv Panke, Zhang Yanpeng. Structural design of ceramic composite armor[J].Ordnance Material Science and Engineering,2011(6):84.
刘胜,吕攀珂,张艳朋.陶瓷复合装甲的结构设计研究[J].兵器材料科学与工程,2011(6):84.
13 Wang Heping, Wang Zhihui. Influence of ceramic confined effect on ballistic performance of composite armor[J].Ordnance Material Science and Engineering,2008(2):61.
王和平,王智慧.陶瓷约束效应对复合装甲抗弹性能的影响[J].兵器材料科学与工程,2008(2):61.
14 Zhang Yu. Development of sandwich armor and aluminum alloy armor materials[J].Science & Technology of Baotou Steel,2011(5):4(in Chinese).
张煜.“三明治装甲”与铝合金装甲材料发展[J].包钢科技,2011(5):4.
15 Wang Yuanbo. Research on ballistics resistance and failure mechanism of fiber-reinforced laminate[D].Hefei:University of Science and Technology of China, 2006(in Chinese).
王元博.纤维增强层合材料的抗弹性能和破坏机理研究[D].合肥:中国科学技术大学,2006.
16 Cai Liang, Jiang Weifeng, Zhang Taihua. Viscoplastic property of shear-thickening gel under shear and the modification of its mechanical property[J].Journal of Functional Materials,2017(8):8181(in Chinese).
蔡亮,蒋伟峰,张泰华.剪切增稠胶剪切条件下的粘弹性能及其力学性能改性[J].功能材料,2017(8):8181.
17 Hassan T A. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites[J].Materials Science and Engineering A,2010,527:2892.
18 Decker M J. Stab resistance of shear thickening fluid (STF)-treated fabrics[J].Composites Science and technology,2007,67:565.
19 Fernández D, Zaera R. A new tool based on artificial neural networks for the design of lightweight ceramic-metal armour against high-velocity impact of solids[J].International Journal of Solids and Structures,2008,45:6369.
20 Goncalves D P, Melo F C L, Klein A N. Analysis and investigation of ballistic impact on ceramic metal composite armour[J].International Journal of Machine Tools & Manufacture,2004,44:307.
21 Lee M, Yoo Y H. Analysis of ceramic metal armour systems[J].International Journal of Impact Engineering,2001,25:819.
22 Zhang X Q, Yang G T, Huang X Q. Analytical model of ceramic metal armor impacted by deformable projectile[J].Applied Mathematics and Mechanics(English Edition),2006,27(3):287.
23 Shen Zhiqiang. Investigation of mechanisms of ceramic composite target under noncentral impact of armour-piercing projectile[D].Changsha:National University of Defense Technology,2006(in Chinese).
申志强.穿甲子弹偏心入射陶瓷复合靶板的侵彻机理研究[D].长沙:国防科学技术大学,2006.
24 Du Zhonghua. Mechanics research on penetration of KE-projectile to ceramic composite amour[D].Nanjing:Nanjing University of Science and Technology,2002(in Chinese).
杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京:南京理工大学,2002.
25 Zouheir F, Kamran B, Yigui X. Optimum design of two-component composite armors against high-speed impact [J].Composite Structures,2006,73:253.
26 Zaera R. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact [J].Composites:Part A,2000,31:823.
27 Goncalves D P, Melo F C L, Klein A N. Analysis and investigation of ballistic impact on ceramic/metal composite armour[J].International Journal of Machine Tools and Manufacturing,2004,44:307.
28 Han Hui, Li Nan. Research progress in metal encapsulating ceramic composite armors[J].Ordnance Material Science and Engineering,2008,31(4):79(in Chinese).
韩辉,李楠.金属封装陶瓷复合装甲研究进展[J].兵器材料科学与工程,2008,31(4):79.
29 Lundberg P, Renstrom R, Lundberg B. Impact of metallic projectiles on ceramic targets: Transition between interface defeat and penetration[J].International Journal of Impact Engineering,2000,24:259.
30 Chocron I S, Benloulo V, Sanchez G. A new analytical model to simulate impact onto ceramic composite armors[J].International Journal of Impact Engineering,1998,21(6):461.
31 Shokrieh M M, Javadpour G H. Penetration analysis of a projectile in ceramic composite armor[J].Composite Structures,2008,82:269.
32 Yang Wei. Bullet-proof mechanism of ceramics/composites combined armor panels[J].Aerospace Materials & Technology,2000,30(5):70(in Chinese).
杨威.陶瓷/复合材料装甲板防弹机理分析[J].宇航材料工艺,2000,30(5):70.
33 Zhang Z, Shen J, Zhong W, et al. A dynamic model of ceramic fibre-reinforced plastic hybrid composites under projectile striking[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2002,216:325.
34 Mines R A W. A one-dimensional stress wave analysis of a lightweight composite armour[J].Composite Structures,2004,64:55.
35 Fawaz Z, Zheng W, Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours[J].Composite Structures,2004:63 387.
36 Feli S, Asgari M R. Finite element simulation of ceramic composite armor under ballistic impact[J].Composites:Part B,2011,42:771.
37 Su Y, Wu C Q, Griffith M. Mitigation of blast effects on aluminum foam protected masonry walls[J].Transactions of Tianjin University,2008,14(s1):558.
38 Ashby M F, Evans A G, Fleck N A, et al. Metal foams: A design guide[M].Butterworth-Heinemann,2000.
39 Tian Jie. The shock wave attenuation and anti-detonation property of aluminum foam[D].Hefei:University of Science and Technology of China,2006(in Chinese).
田杰.泡沫铝的冲击波衰减和抗爆震特性研究[D].合肥:中国科学技术大学,2006.
40 Hosun C, Jaeung C. Damage and penetration behavior of aluminum foam at various impacts[J].Journal of Central South University,2014,21(9):3442.
41 Yang Donghui, He Deping, Yang Shangrun. Compressive and energy absorption properties of cellular AlCu5Mn alloy foams[J].The Chinese Journal of Nonferrous Metals,2009,19(11):1934(in Chinese).
杨东辉,何德坪,杨上闰.胞状AlCu5Mn合金泡沫的压缩性能和能量吸收特性[J].中国有色金属学报,2009,19(11):1934.
42 Cheng Tao, Xiang Yu, Ma Xiaoqiang. Brief review of the research of strain rate effect of metal foams[J].Metal Materials and Metallurgy Engineering,2008,36(3):60(in Chinese).
程涛,向宇,马小强.泡沫金属应变率效应研究概述[J].金属材料与冶金工程,2008,36(3):60.
43 Tedesco J W, Ross C A, Kufunen S T. Strain rate effects on the compressive strength of shock-mitigation foams[J].Journal of Sound and Vibration,1993,165:376.
44 Gabriel W, Soliman M, Dijkstra K. Microstructure and phase beha-vior of block copoly (ether ester) thermoplastic elastomeres[J].Macromolecules,2001,34:1685.
45 Wang Baozhen, Hu Shisheng. Mechanical properties of flexible pol-yurethane foams under impact loading[J].Polymer Materials Science & Engineering,2009,25(12):48(in Chinese).
王宝珍,胡时胜.软质聚氨酯泡沫的冲击力学性能[J].高分子材料科学与工程,2009,25(12):48.
46 Cai Junfeng, Yi Jianzheng, Zhao Ran. Structural design and anti-explosion experiment of UHMWPE-PUF composite[J].Polymer Materials Science & Engineering,2012(5):69(in Chinese).
蔡军锋,易建政,赵然.UHMWPE-PUF复合材料结构设计与隔爆实验[J].高分子材料科学与工程,2012(5):69.
47 Huang Li, Deng Hua, Wang Chen. Mechanical properties of rigid polyurethane foam used in metal composite roof panels[J]. Journal of Building Materials,2014,179(2):320.
黄莉,邓华,王宸.金属复合屋面板用硬质聚氨酯泡沫的力学性能[J].建筑材料学报,2014,179(2):320.
48 Guan Bowen, Liu Kaiping, Zhao Xiufeng. Progress in study and application of foamed concrete[J].Guangdong Building Materials,2008(2):19(in Chinese).
关博文,刘开平,赵秀峰.泡沫混凝土研究及应用新进展[J].广东建材,2008(2):19.
49 Cheng H F, Han F S. Compressive behavior and energy absorbing characteristic of open cell aluminum foam lled with silicate rubber[J].Scripta Materialia,2003,49:583.
50 Manu K J. A self-healing smart syntactic foam based grid stiffened sandwich structure[D].Baton Rouge:Graduate Faculty of Louisiana State University and Agricultural and Mechanical College,2009.
51 Dong Y X, Feng S S, Jin J. Analysis on dynamic response of hard-soft-hard sandwich panel under blast loading[J].Transaction of Tianjin University,2006(12):233.
52 Liang X X, Wang Z Q, Wang R N. Deformation model and perfor-mance optimization research of composite blast resistant wall subjected to blast loading[J].Journal of Loss Prevention in the Process Industries,2017,49(9):326.
53 Bian Xiaohua, Shi Shaoqing, Kang Jiangong, et al. Research on attenuation characteristics of blast wave for a new projective structure [J].Journal of Logistical Engineering University,2005(4):39(in Chinese).
边小华,石少卿,康建功,等.一种新型防护结构对爆炸冲击波衰减特性的研究[J].后勤工程学院学报,2005(4):39.
54 Ren Zhigang, Lou Menglin, Tian Zhimin. Analysis of antidetonational property of sandwich panel of ployurethane foam[J].Journal of Tongji University,2003,31(1):6(in Chinese).
任志刚,楼梦麟,田志敏.聚氨酯泡沫复合夹层板抗爆特性分析[J].同济大学学报,2003,31(1):6.
55 Dharmasena K P, Wadley H N G, Xue Z Y, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Enginee-ring,2008,35(9):1063.
56 Qian L,Qu M,Feng G. Study on terminal effects of dense fragment cluster impact on armor plate. Part I: Analytical model[J].International Journal of Impact Engineering,2005,31(6):755.
57 Sun Jie, Zhu Lixin, Zhong Bing, et al. Study on blast resistance of GFRP honeycomb sandwich composite[J].Engineering Plastics Application,2003,31(3):40(in Chinese).
孙杰,朱立新,钟兵,等.玻璃钢蜂窝夹层复合材料抗爆性能研究[J].工程塑料应用,2003,31(3):40.
58 Haydn N G,Kumar P,Doug T,et al.Dynamic compression of square honeycomb structures during underwater impulsive loading[J].Journal of Mechanics of Materials and structures,2007,2(10):23.
59 Zhang Yanchang, Wang Zili. Study on crashworthiness of honeycomb sandwich panel under lateral dynamic load[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2007,21(3):1(in Chinese).
张延昌,王自力.蜂窝式夹层板耐撞性能研究[J].江苏科技大学学报(自然科学版),2007,21(3):1.
60 Yang Yongxiang, Zhang Yanchang. Numerical simulation of honeycomb core structure under lateral impact load[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2007,21(4):7(in Chinese).
杨永祥,张延昌.蜂窝式夹芯层结构横向耐撞性能数值仿真研究[J].江苏科技大学学报(自然科学版),2007,21(4):7.
61 Song Hongwei, Yu Gang, Fan Zijie. Interaction effect in energy absorption of porous material filled thin-walled structure[J].Acta Mechanica Sinica,2005,37(6):697(in Chinese).
     (下转第827页)
宋宏伟,虞刚,范子杰,等.多孔材料填充薄壁结构吸能的相互作用效应[J].力学学报,2005,37(6):697.
62 Huang Xicheng, Chen Yuze, Jiang Jiaqiao, et al. Energy absorption of foamed aluminum-filled structures subjected to explosive and impact loadings[J].Journal of PLA University of Science and Technology,2007,8(5):470(in Chinese).
黄西成,陈裕泽,蒋家桥,等.撞击作用下泡沫铝填充结构吸能特征[J].解放军理工大学学报,2007,8(5):470.
63 Chen X, Kong X G, Venkata K, et al. Energy absorption perfor-mance of steel tubes enhanced by a nanoporous material functionalized liquid[J].Applied Physics Letters,2006,89:241918.
64 Lv Xiaocong, Xu Jinyu, Bai Erlei, et al. Analysis of coupling between shrapnel and blast shock wave[J].Journal of PLA University of Science and Technology,2007,8(6):640(in Chinese).
吕晓聪,许金余,白二雷,等.弹片与爆炸冲击波耦合作用分析[J].解放军理工大学学报,2007,8(6):640.
65 Michael W, Bernhard M, Michael A Morgan. Shock fragmentation model for gravitational collapse[J].Research in Astronomy and Astrophysics,2011,11(5):545.
66 Wierzbicki T. Petalling of plates under explosive and impact loading[J].International Journal of Impact Engineering,1999,22(9):935.
67 Dean J, S-Fallah A, Brown P M, et al. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores[J].Composite Structures,2011,93(3):1089.
68 Gebuer K. Performance, tolerance and cost of TiAl passenger car valves[J].Intermetallics,2006,14(4):355.
宋宏伟,虞刚,范子杰,等.多孔材料填充薄壁结构吸能的相互作用效应[J].力学学报,2005,37(6):697.
62 Huang Xicheng, Chen Yuze, Jiang Jiaqiao, et al. Energy absorption of foamed aluminum-filled structures subjected to explosive and impact loadings[J].Journal of PLA University of Science and Techno-logy,2007,8(5):470(in Chinese).
黄西成,陈裕泽,蒋家桥,等.撞击作用下泡沫铝填充结构吸能特征[J].解放军理工大学学报,2007,8(5):470.
63 Chen X, Kong X G, Venkata K, et al. Energy absorption perfor-mance of steel tubes enhanced by a nanoporous material functiona-lized liquid[J].Applied Physics Letters,2006,89:241918.
64 Lv Xiaocong, Xu Jinyu, Bai Erlei, et al. Analysis of coupling between shrapnel and blast shock wave[J].Journal of PLA University of Science and Technology,2007,8(6):640(in Chinese).
吕晓聪,许金余,白二雷,等.弹片与爆炸冲击波耦合作用分析[J].解放军理工大学学报,2007,8(6):640.
65 Michael W, Bernhard M, Michael A Morgan. Shock fragmentation model for gravitational collapse[J].Research in Astronomy and Astrophysics,2011,11(5):545.
66 Wierzbicki T. Petalling of plates under explosive and impact loading[J].International Journal of Impact Engineering,1999,22(9):935.
67 Dean J, S-Fallah A, Brown P M, et al. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores[J].Composite Structures,2011,93(3):1089.
68 Gebuer K. Performance, tolerance and cost of TiAl passenger car valves[J].Intermetallics,2006,14(4):355.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed