Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060189-8    https://doi.org/10.11896/cldb.24060189
  金属与金属基复合材料 |
利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究
李成晗, 朱旭东, 李依萍, 燕红*
哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
Study on Improving Hydrogen Production Efficiency of UIO-66-NH2 Material Photocatalytic Hydrolysis by Using Lignin Carbon Quantum Dots
LI Chenghan, ZHU Xudong, LI Yiping, YAN Hong*
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 15204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢气作为一种清洁能源,因具有可再生性、环境友好性和较高的能量输出比等特性,被认为可以替代传统矿物燃料。木质素作为一类芳香族可再生生物质材料,在实际应用中被作为废液随意排放,造成资源浪费,若将其制备成高价值的碳量子点(CQDs),在光催化研究中则具有广阔的应用前景。为此,本工作以碱木素为碳源制备了木质素碳量子点与经典的金属有机骨架材料UIO-66-NH2构筑复合光催化剂,实现了高效的光催化析氢活性。采用水热法在180 ℃、12 h 条件下制备了木质素碳量子点。取制备好的木质素碳量子点溶液10、15和20 mL分别投入到UIO-66-NH2的合成体系中,采用一步水热法在120 ℃、24 h条件下制备了CQDs/UIO-66-NH2系列复合光催化剂。在λ≥380 nm波长下的光催化产氢活性测试表明,CQDs/UIO-66-NH2复合材料的产氢速率达到750 μmol/(h·g),是单独UIO-66-NH2(145 μmol/(h·g))的5倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李成晗
朱旭东
李依萍
燕红
关键词:  木质素  木质素碳量子点  金属有机骨架  异质结  光催化产氢    
Abstract: Hydrogen is a clean energy source that is considered to be an alternative to conventional fossil fuels due to its renewability, environmental friendliness, and high energy output ratio. Lignin is a type of aromatic renewable biomass material, and is often be used as waste in practice. Actually, it can be made into high-value substances such as carbon quantum dots (CQDs), which have upconversion luminescence properties, it can quickly achieve electron separation, suppress electron hole pair recombination, and other advantages. In this work, classic metal organic framework materials UIO-66-NH2 were used to achieve efficient photocatalytic hydrogen evolution activity. At the same time, lignin was used as carbon source to prepare carbon dots, which also realized the high value utilization of lignin. The main research is as follows. Firstly, lignin carbon quantum dots were prepared by hydrothermal method at 180 ℃ for 12 h. Then, 10, 15, and 20 mL of the prepared CQDs solution were added into the synthesis system of UIO-66-NH2, respectively. The CQDs/UIO-66-NH2 composite materials were prepared using a one-step hydrothermal met-hod at 120 ℃ for 24 h. The photocatalytic hydrogen production activity test shows that, with a wavelength of λ≥380 nm, the hydrogen production rate of CQDs/UIO-66-NH2 composite material reaches 750 μmol/(h·g), which is 5 times that of UIO-66-NH2 alone (145 μmol/(h·g)).
Key words:  lignin    lignin carbon quantum dots    metal organic framework    heterojunction    photocatalytic hydrogen production
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB33  
基金资助: 国家自然科学基金面上项目(22278099);国家自然科学基金区域创新发展联合基金重点项目(U23A20135)
通讯作者:  燕红,哈尔滨理工大学材料科学与化学工程学院教授、博士研究生导师。目前主要从事木质纤维素的降解和转化利用等方面的研究。yanhong204821@aliyun.com   
作者简介:  李成晗,哈尔滨理工大学材料科学与化学工程学院博士研究生,在燕红教授的指导下进行研究。目前主要从事木质纤维素的降解和转化利用等方面的研究。
引用本文:    
李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
LI Chenghan, ZHU Xudong, LI Yiping, YAN Hong. Study on Improving Hydrogen Production Efficiency of UIO-66-NH2 Material Photocatalytic Hydrolysis by Using Lignin Carbon Quantum Dots. Materials Reports, 2025, 39(15): 24060189-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060189  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060189
1 Tian J, Zhang Y, Du L, et al. Nature Chemistry, 2020, 12(12), 1150.
2 Wang Q, Hisatomi T, Jia Q, et al. Nature Materials, 2016, 15(6), 611.
3 Li J L, Li G H, Ma S L, et al. Thermal Power Generation, 2021, 50(6), 1(in Chinese).
李建林, 李光辉, 马速良, 等. 热力发电, 2021, 50(6), 1.
4 Zhao Y Z, Meng B, Chen L X, et la. Chemical Industry and Engineering Progress, 2015, 34(9), 3248(in Chinese).
赵永志, 蒙波, 陈霖新, 等. 化工进展, 2015, 34(9), 3248.
5 Wang X, Cao L, Lu F, et al. Chemical Communications, 2009, (25), 3774.
6 Larson D R, Zipfel W R, Williams R M, et al. Science, 2003, 300(5624), 1434.
7 Zhao X, Huang C, Xiao D, et al. ACS Applied Materials & Interfaces, 2021, 13, 7600.
8 Chen J, Qi J, He J, et al. ACS Applied Materials & Interfaces, 2022, 14, 12748.
9 Zhuang J, Ren S, Zhu B, et al. Chemical Engineering Journal, 2022, 446, 136873.
10 Zhu S, Song Y, Zhao X, et al. Nano Research, 2015, 8(2), 355.
11 Zhang X, Jiang M, Niu N, et al. ChemSusChem, 2018, 11(1), 11.
12 Xu X, Ray R, Gu Y, et al. Journal of the American Chemical Society, 2004, 126(40), 127367.
13 Hutton G, Martindale B, Reisner E. Chemical Society Reviews, 2017, 46(20), 6111.
14 Wang L, Li W, Yin L, et al. Science Advances, 2020, 6(40), eabb6772.
15 Li Q, Ma L, Li L, et al. Chemical Engineering Journal, 2022, 430, 132696.
16 Myint A A, Rhim W K, Nam J M, et al. Journal of Industrial and Engineering Chemistry, 2018, 66, 387.
17 Zhu L, Shen D, Liu Q, et al. Applied Surface Science, 2021, 565, 150526.
18 Rosso C, Filippini G, Prato M. ACS Catalysis, 2020, 10(15), 8090.
19 Shi Y, Yang A F, Cao C S, et al. Coordination Chemistry Reviews, 2019, 390, 50.
20 Guo X, Liu L, Zhao Y, et al. Coordination Chemistry Reviews, 2021, 435, 213785.
21 Wu Q, Zhang C, Sun K, et al. Acta Chimica Sinica, 2020, 78(7), 688.
22 Yap M H, Fow K L, Chen G Z. Green Energy & Environment, 2017, 2(3), 218.
23 Zhang X, Wang X, Fan W, et al. Chinese Journal of Chemistry, 2020, 38(5), 509.
24 Kampouri S, Ebrahim F M, Fumanal M, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 142397.
25 Soltani R, Pelalak R, Pishnamazi M, et al. Arabian Journal of Chemistry, 2021, 14(4), 1563.
26 Surendran S, Sankar K V, Berchmans L J, et al. Materials Science in Semiconductor Processing, 2015, 33, 16.
27 Ismail A A, Bahnemann D W. Materials and Solar Cells, 2014, 128, 85.
28 Sun K, Liu M, Pei J Z, et al. Angewandte Chemie, 2020, 59(50), 229373.
29 Wang, Yilan, et al. Separation and Purification Technology, 2025, 353, 128663.
30 Shanmugam M, Nithish A, Karthikeyan S. Catalysts, 2024, 14(6), 341.
31 Tong Y C, Niu L, Lin X G, et al. Journal of Anhui University(Natural Sicence Edition), 2020, 44(2), 72(in Chinese).
童又迟, 牛玲, 林先刚, 等. 安徽大学学报(自然科学版), 2020, 44(2), 72.
32 Xu M L, Li D D, Sun K, et al. Angewandte Chemie, 2021, 133(30), 165082.
[1] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[2] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[3] 苗瑞霞, 贾小坛, 牛佳美, 晏杰. 二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性[J]. 材料导报, 2025, 39(14): 24070065-7.
[4] 谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
[5] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[6] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[7] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[8] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[9] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[10] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[11] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[12] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[13] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[14] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[15] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed