Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060161-8    https://doi.org/10.11896/cldb.24060161
  无机非金属及其复合材料 |
基于3D细观模型的混凝土单轴拉压应力应变关系影响因素研究
薛刚*, 刘毅, 牟一飞
内蒙古科技大学土木工程学院,内蒙古 包头 014010
Analysis of Influencing Factors of Stress-Strain Curve of Three-dimensional Mesoscopic Concrete Under Uniaxial Tension and Compression Load
XUE Gang*, LIU Yi, MOU Yifei
Inner Mongolia University of Science and Technology, College of Civil Engineering, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 32000KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 细观层面上混凝土由砂浆、粗骨料和界面过渡区(ITZ)组成。为研究基于3D细观模型的混凝土单轴拉压应力应变关系的影响因素,基于传统骨料生成投放方法建立了空间随机凸多面体粗骨料模型,建立了厚度可调的实体界面过渡区,对三维细观混凝土在准静态单轴压缩和单轴拉伸下的力学行为进行有限元分析。通过仿真结果与试验结果的对比,验证了三维细观有限元模型的可靠性,并分析了骨料分布、骨料几何变化和界面过渡区厚度对混凝土破坏形态和应力-应变关系的影响规律。结果表明:骨料分布对单轴受压损伤的影响较小,对单轴受拉损伤影响较大,对单轴拉压荷载作用下的应力应变曲线影响较大。随骨料粗糙度的增加,单轴受压时损伤面积增大,峰值应力逐渐增大;单轴受拉时损伤与峰值应力受其影响较小,无明显变化规律。随界面过渡区厚度增加,单轴受拉与单轴受压峰值应力逐渐减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛刚
刘毅
牟一飞
关键词:  混凝土  3D细观模型  界面过渡区厚度  单轴拉伸  单轴压缩    
Abstract: A spatial random convex polyhedron coarse aggregate model was established based on the traditional aggregate generation method, meanwhile, a solid interface transition zone with adjustable thickness was established. The mechanical behavior of three-dimensional mesoscopic concrete under quasi-static uniaxial compression and uniaxial tension was analyzed by finite element method. The simulation results of stress-strain relationship and damage failure mode were compared with the experimental results, which verifies the reliability of the three-dimensional mesoscopic finite element model. Then the influence of aggregate distribution, aggregate geometric change and interface transition zone thickness on the failure mode and stress-strain relationship of concrete were analyzed. The results showed that aggregate distribution has little effect on uniaxial compression damage, but had great influence on uniaxial tensile damage and stress-strain curve under uniaxial tension and compression load. With the increase of aggregate roughness, the damage area increased and the peak stress increased gradually under uniaxial compression. The damage and peak stress were less affected by uniaxial tension, and there was no obvious change rule. With the increase of the thickness of the interfacial transition zone, the peak stress of uniaxial tension and uniaxial compression decreased gradually.
Key words:  concrete    three-dimensional mesoscopic model    interface transition zone thickness    uniaxial tension    uniaxial compression
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU528  
基金资助: 2023年度自治区直属高校基本科研业务费项目(2023RCTD025);国家自然科学基金(52168032)
通讯作者:  薛刚,内蒙古科技大学土木工程学院教授、硕士研究生导师。目前主要从事新型建筑材料、混凝土力学等方面的研究。xuegang-2008@126.com   
引用本文:    
薛刚, 刘毅, 牟一飞. 基于3D细观模型的混凝土单轴拉压应力应变关系影响因素研究[J]. 材料导报, 2025, 39(15): 24060161-8.
XUE Gang, LIU Yi, MOU Yifei. Analysis of Influencing Factors of Stress-Strain Curve of Three-dimensional Mesoscopic Concrete Under Uniaxial Tension and Compression Load. Materials Reports, 2025, 39(15): 24060161-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060161  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060161
1 Zhao B, Wang J. Powder Technology, 2016, 291, 262.
2 Zhao L, Zhang S, Huang D, et al. Construction and Building Materials, 2020, 262, 119986.
3 Yuan Q, Kong X, Zhang J, et al. Powder Technology, 2021, 394, 838.
4 Wu Z, Zhang J, Yu H, et al. Composites Part B:Engineering, 2020, 198, 108025.
5 Thilakarathna P S M, Baduge K S, Mendis P, et al. Engineering Fracture Mechanics, 2020, 231, 106974
6 Wittmann F H, Roelfstra P E, Sadouki H. Materials Science and Engineering, 1985, 68(2), 239.
7 Wriggers P, Moftah S O. Finite Elements in Analysis and Design, 2006, 42(7), 623.
8 Xu W X, Chen H S, Lv Z. Physica A, Statistical Mechanics and Its Applications, 2011, 390(13), 2452.
9 Wang X, Zhang M, Jivkov A P. International Journal of Solids and Structures, 2016, 80, 310.
10 Wu Z, Zhang J, Yu H, et al. Composites Part B, Engineering, 2020, 198, 108025.
11 Zhang H, Sheng P, Zhang J, et al. Construction and Building Materials, 2019, 225, 927.
12 Wang Z M. Journal of Basic Science and Engineering, 2000(2), 187 (in Chinese).
王宗敏. 应用基础与工程科学学报, 2000(2), 187.
13 Ma H F, Xu W X, Li Y C. Computers & Structures, 2016, 177, 103.
14 Ma H F, Song L Z, Xu W X. Computers & Structures, 2018, 209, 57.
15 Qin X G, Gu C S, Shao C F, et al. Construction and Building Materials, 2020, 253, 119184
16 Siiria S, Yliruusi J. Powder Technology, 2007, 174(3), 82.
17 Han K, Feng Y T, Owen D R J. Powder Technology, 2005, 155(1), 33.
18 Zhang Z H, Song X G, Liu Y, et al. Composites Science and Technology, 2017, 149, 235.
19 Chen T, Xiao S. Construction and Building Materials, 2021, 277, 122257.
20 Gilbert E G, Johnson D W, Keerthi S S. IEEE Journal on Robotics and Automation, 1987, 4(2), 193.
21 Mondal P, Shah S P, Marks L D, ACI Materials Journal, 2008, 105, 174.
22 Mondal P, Shah S P, Marks L D, In, Conference record of 3rd international symposium on nanotechnology in construction, Prague, 2009, pp. 315.
23 Jin L, Li J, Yu W, et al. Engineering Fracture Mechanics, 2021, 253, 107870.
24 Wang J M, Jivkov A P, Li Q M, et al. Theoretical and Applied Fracture Mechanics, 2020, 109, 102722.
25 Wriggers P, Moftah S O, Finite Elements in Analysis and Design, 2006, 42, 623.
26 Hordijk D A. Local approach to fatigue of concrete. Ph. D. Thesis, Delft University of Technology, Delft, 1991.
27 Zhang Y, Zhang X R, Wu H, et al. Engineering Mechanics, 2024, 41(8), 80(in Chinese).
章毅, 张湘茹, 吴昊, 等. 工程力学, 2024, 41(8), 80.
28 Lowes L N. Finite element modeling of reinforced concrete beam-column bridge connections, Ph. D. Thesis, University of California, Berkeley, 1999.
29 Song Z, Lu Y. International Journal of Impact Engineering, 2012, 46, 41.
30 Li W, Xiao J, Sun Z, et al. Cement and Concrete Composites, 2012, 34(10), 1149.
31 Naderi, Tu W L, Zhang M Z, Cement and Concrete Research, 2021, 140, 106317.
32 Ren Q W, Yin Y J, Shen L. Journal of Hydraulic Engineering, 2020, 51(10), 1267(in Chinese).
任青文, 殷亚娟, 沈雷. 水利学报, 2020, 51(10), 1267.
33 Kim S M, Abu Al-Rub R K. Cement and Concrete Research, 2011, 41(3), 339.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[6] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[7] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[8] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[9] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[10] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[11] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[12] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[13] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[14] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[15] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed