Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22100182-8    https://doi.org/10.11896/cldb.22100182
  高分子与聚合物基复合材料 |
木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展
姜波1,2,*, 焦欢1, 郭新宇1, 金永灿1,*
1 南京林业大学江苏省林业资源高效加工利用协同创新中心,南京 210037
2 植物纤维功能材料国家林业和草原局重点实验室,福州 350108
Research Progress on Lignin Structure-Melt Rheology Relationship in Fused Deposition Modeling
JIANG Bo1,2,*, JIAO Huan1, GUO Xinyu1, JIN Yongcan1,*
1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
2 National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 23099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木质素作为自然界储量最大的可再生芳香族生物质资源,开发其高值化加工利用技术是林业生物质产业转型升级的重要途径。近年来,基于3D打印技术制备高性能木质素基复合材料的研究发展迅速。木质素的3D打印可快速、高效构建具有特定功能特性的复合材料,且可灵活调控木质素基复合材料的宏观、微观结构,以使其满足能量传输、药物递送和个性化医疗等需求。然而,由于木质素分子结构复杂多变、分子量分布宽、脆性大等特点,木质素的分子结构-流变学响应关系仍缺乏系统研究,限制了木质素基复合材料的进一步开发和应用。本文基于近年来木质素熔融沉积式3D打印的发展现状,系统总结了木质素分子结构与其熔融流变学的响应关系。首先介绍了木质素的分子结构特性和熔融沉积式3D打印技术,然后重点对比分析了不同木质素分子结构、木质素与热塑性高聚物的共混对其熔融流变学特性和打印性的影响,最后总结了木质素熔融沉积式3D打印面临的挑战,并对木质素熔融沉积式3D打印的发展方向进行了展望,通过更好地理解木质素熔融流变学的构-效关系,促进木质素的高值化利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜波
焦欢
郭新宇
金永灿
关键词:  木质素  熔融沉积打印  分子结构  熔融流变学  构-效关系    
Abstract: The development of high-value processing and utilization technology for lignin, the most abundant renewable aromatic biomass in nature, is an important way to facilitate the industrial upgrade of forest chemicals and materials. In recent years, 3D printing of lignin has flourished to construct advanced lignin-based materials. The use of 3D printing technologies enables to print lignin into composite materials with desired functional properties and the macro- and microstructures of 3D printed lignin composites can be flexible tuned to meet the requirements of energy, drug delivery, and personalized medicine. However, the unclear structure-rheological relationship caused by the diverse chemical structure, high polydispersity in molecular weight, and rigid structure of lignin greatly limits its performance and applications. Based on the development of fused deposition modeling 3D printing for lignin in last decades, this paper summarizes the structure-melt rheology relationship of lignin and its compo-sites. The lignin structure and the fused deposition modeling technology are firstly discussed and then the effects of different lignin structures and lignin/polymer blends on their melt rheological behavior and printability are vertically reviewed. Finally, the challenges and future directions of lignin fused deposition modeling 3D printing is also highlighted to better understand the structure-melt rheology relationship and to promote the high-value utilization of lignin.
Key words:  lignin    fused deposition modeling    structure    melt rheology    structure-rheology relationship
发布日期:  2024-06-25
ZTFLH:  O636.2  
基金资助: 国家自然科学基金(32201500);江苏省自然科学基金(BK20220431);江苏省高等学校自然科学研究基金(21KJB220001);国家林业和草原局植物纤维功能材料重点实验室开放基金(2022KFJJ05)
通讯作者:  *姜波,南京林业大学轻工与食品学院副教授、硕士研究生导师。2015年获南京林业大学轻化工程专业工学学士学位,2020年获南京林业大学制浆造纸工程博士学位,2022年入选中国科协第八届青年人才托举工程。目前主要从事生物质资源高效转化利用、木质素3D打印等领域的基础研究、材料创制和技术开发工作。发表论文40余篇,包括Nature Sustainability、Advanced Functional Materials、Advanced Science、Small、Bioresource Techno-logy、ACS Sustainable Chemistry & Engineering等。bjiang@njfu.edu.cn;
金永灿,南京林业大学轻工与食品学院教授、博士研究生导师,国际木材科学院院士。1989年毕业于南京林业大学制浆造纸工程专业,1998年获南京林业大学林产化学加工工程博士学位。先后前往东京农工大学、美国北卡罗莱纳州立大学、东京大学等学习进修或合作研究。主要从事生物质资源高效转化及制浆造纸工程等领域的基础研究和技术开发工作。发表论文300余篇,包括Chemical Reviews、Chemical Engineering Journal、Advanced Functional Materials、Bioresource Technology、Carbohydrate Polymers、Food Chemistry等。jinyongcan@njfu.edu.cn   
引用本文:    
姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
JIANG Bo, JIAO Huan, GUO Xinyu, JIN Yongcan. Research Progress on Lignin Structure-Melt Rheology Relationship in Fused Deposition Modeling. Materials Reports, 2024, 38(11): 22100182-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100182  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22100182
1 Li P H, Zhang L, Yang C, et al. China Pulp & Paper, 2022, 41(7), 95 (in Chinese).
李鹏辉, 张璐, 杨驰, 等. 中国造纸, 2022, 41(7), 95.
2 Figueiredo P, Lintinen K, Hirvonen J T, et al. Progress in Materials Science, 2018, 93, 233.
3 Ebers L S, Arya A, Bowland C C, et al. Biopolymers, 2021, 112(6), e23431.
4 Jiang B, Jin Y C. Acta Materiae Compositae Sinica, 2022, 39(7), 3059 (in Chinese).
姜波, 金永灿. 复合材料学报, 2022, 39(7), 3059.
5 Pei J C. Lignocellulosic chemistry (fifth edition), China Light Industry Press Ltd., China, 2021, pp. 56 (in Chinese).
裴继诚. 木质素化学(第五版), 中国轻工业出版社, 2021, pp. 56.
6 Pang T, Wang G, Sun, H, et al. Industrial Crops and Products, 2021, 165, 113442.
7 Abu-Omar M M, Barta K, Beckham G T, et al. Energy & Environmental Science, 2021, 14, 262.
8 Feng H X, Tu Y. Journal of Qingdao University (Natural Science Edition), 2018, 31(1), 46(in Chinese).
冯鹤翔, 涂轶. 青岛大学学报(自然科学版), 2018, 31(1), 46.
9 Kang X, Kirui A, Dickwella M C. Nature Communications, 2019, 10, 347.
10 Mottiar Y, Vanholme R, Boerjan W, et al. Current Opinion in Biotechnology, 2016, 37, 190.
11 Ralph J. Phytochemistry Reviews, 2010, 9, 65.
12 Molinari H B, Pellny T K, Freeman J, et al. Frontiers in Plant Science, 2013, 4, 50.
13 Jiang B, Jiao H, Guo X Y, et al. Advanced Science, 2023,10, 2206055.
14 Yuan T Q, Sun Z H, Dai L. Lignin chemistry, China Light Industry Press Ltd., China, 2021 (in Chinese).
袁同琦, 孙卓华, 戴林. 木质素化学, 中国轻工业出版社, 2021.
15 Xu Z M, Nakamura H, Akiyama T, et al. Journal of Wood Chemistry and Technology, 2021, 41(2-3), 118.
16 Jiang B, Cao T Y, Gu F, et al. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(6), 135 (in Chinese).
姜波, 曹婷月, 谷峰, 等. 南京林业大学学报(自然科学版), 2016, 40(6), 135.
17 Mandlekar N, Cayla A, Rault F, et al. Lignins: trends and applications, Poletto, ed., InTechOpen, London, 2018, pp. 207.
18 Li S, Yuan S, Zhu J, et al. Additive Manufacturing, 2020, 36, 101406.
19 Dang Y, Zhang M Y, Cheng Y N, et al. Technology Innovation and Application, 2022, 12(24), 166 (in Chinese).
党乐, 张梦雨, 成艳娜, 等. 科技创新与应用, 2022, 12(24), 166.
20 Chua C K, Leong K F, Lim C S. Rapid prototyping: principles and applications in manufacturing, World Scientific, Singapore, 2003.
21 Park S, Shou W, Makatura L, et al. Matter, 2022, 5, 43.
22 Liu Y Z J, Xia C L, Zhang J, et al. Engineering Plastics Application, 2017, 45(3), 130 (in Chinese).
刘洋子健, 夏春蕾, 张均, 等. 工程塑料应用, 2017, 45(3), 130.
23 Lind J U, Busbee T A, Valentine A D, et al. Nature Materials, 2017, 16, 303.
24 Geng Y, He H, Jia Y, et al. Polymer Composites, 2019, 40, 3375.
25 Bui, J C, Davis J T, Esposito D V. Sustainable Energy Fuels, 2020, 4, 213.
26 Raney J R, Compton B G, Mueller J, et al. PNAS, 2018, 115, 1198.
27 Wu S, Yang C, Hsu W, et al. Microsystems & Nanoengineering, 2015, 1, 15013.
28 Ligon S C, Liska R, Stampfl J, et al. Chemical Reviews, 2017, 117, 10212.
29 Yang H, Du J, Tang T, et al. New Chemical Materials, 2022, 50(9), 30 (in Chinese).
杨宏伟, 杜江华, 杨婷婷, 等. 化工新型材料, 2022, 50(9), 30.
30 Sikder P, Challa B T, Gummadi S K. Materialia, 2022, 22, 101427.
31 Sadeghifar H, Ragauskas A J. ACS Sustainable Chemistry & Enginee-ring, 2020, 8, 8086.
32 Bova T, Tran C D, Balakshin M Y, et al. Green Chemistry, 2016, 18, 5423.
33 Sun Q, Khunsupat R, Akato K, et al. Green Chemistry, 2016, 18, 5015.
34 Nguyen N A, Barnes S H, Bowland C C, et al. Science Advances, 2018, 4, eaat4967.
35 Holmberg A L, Nguyen N A, Karavolias M G, et al. Macromolecules, 2016, 49, 1286.
36 Holmberg A L, Reno K H, Nguyen N A, et al. ACS Macro Letters, 2016, 5, 574.
37 Akato K, Tran C D, Chen J, et al. ACS Sustainable Chemistry & Engineering, 2015, 3, 3070.
38 Tran C D, Chen J, Keum J K, et al. Advanced Functional Materials, 2016, 26, 2677.
39 Nguyen N A, Meek K M, Bowland C C, et al. Macromolecules, 2018, 51(1), 115.
40 Crestini C, Lange H, Sette M, et al. Green Chemistry, 2017, 19, 4104.
41 Yu Q, Bahi A, Ko F. Macromolecular Materials and Engineering, 2015, 300, 1023.
42 Wasti S, Triggs E, Farag R, et al. Composites Part B:Engineering, 2021, 205, 108483.
43 Mohan D, Bakir A N, Sajab M S, et al. Polymer Composites, 2021, 42, 2408.
44 Vaidya A A, Collet C, Gaugler M, et al. Materials Today Communications, 2019, 19, 286.
45 Morales G M. Structure and properties of alkali lignin modified by bacterial laccase and its application in 3D printing. Ph. D. Thesis, Jiangsu University, China, 2021(in Chinese).
Morales G M. 细菌漆酶对碱木质素的结构和性能的改性及其在3D打印中的应用研究. 博士学位论文, 江苏大学, 2021.
46 Kubo S, Kadla J F. Biomacromolecules, 2005, 6(5), 2815.
47 Nguyen N A, Bowland C C, Naskar A K. Applied Materials Today, 2018, 12, 138.
[1] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[2] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[3] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[4] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[5] 周文娟, 段佳豪, 谢谦, 王华萍. 抗泥型聚羧酸减水剂研究与应用现状[J]. 材料导报, 2021, 35(Z1): 650-653.
[6] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[7] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[8] 陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
[9] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[10] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[11] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[12] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[13] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[14] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[15] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed