Research Progress on Lignin Structure-Melt Rheology Relationship in Fused Deposition Modeling
JIANG Bo1,2,*, JIAO Huan1, GUO Xinyu1, JIN Yongcan1,*
1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China 2 National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
Abstract: The development of high-value processing and utilization technology for lignin, the most abundant renewable aromatic biomass in nature, is an important way to facilitate the industrial upgrade of forest chemicals and materials. In recent years, 3D printing of lignin has flourished to construct advanced lignin-based materials. The use of 3D printing technologies enables to print lignin into composite materials with desired functional properties and the macro- and microstructures of 3D printed lignin composites can be flexible tuned to meet the requirements of energy, drug delivery, and personalized medicine. However, the unclear structure-rheological relationship caused by the diverse chemical structure, high polydispersity in molecular weight, and rigid structure of lignin greatly limits its performance and applications. Based on the development of fused deposition modeling 3D printing for lignin in last decades, this paper summarizes the structure-melt rheology relationship of lignin and its compo-sites. The lignin structure and the fused deposition modeling technology are firstly discussed and then the effects of different lignin structures and lignin/polymer blends on their melt rheological behavior and printability are vertically reviewed. Finally, the challenges and future directions of lignin fused deposition modeling 3D printing is also highlighted to better understand the structure-melt rheology relationship and to promote the high-value utilization of lignin.
1 Li P H, Zhang L, Yang C, et al. China Pulp & Paper, 2022, 41(7), 95 (in Chinese). 李鹏辉, 张璐, 杨驰, 等. 中国造纸, 2022, 41(7), 95. 2 Figueiredo P, Lintinen K, Hirvonen J T, et al. Progress in Materials Science, 2018, 93, 233. 3 Ebers L S, Arya A, Bowland C C, et al. Biopolymers, 2021, 112(6), e23431. 4 Jiang B, Jin Y C. Acta Materiae Compositae Sinica, 2022, 39(7), 3059 (in Chinese). 姜波, 金永灿. 复合材料学报, 2022, 39(7), 3059. 5 Pei J C. Lignocellulosic chemistry (fifth edition), China Light Industry Press Ltd., China, 2021, pp. 56 (in Chinese). 裴继诚. 木质素化学(第五版), 中国轻工业出版社, 2021, pp. 56. 6 Pang T, Wang G, Sun, H, et al. Industrial Crops and Products, 2021, 165, 113442. 7 Abu-Omar M M, Barta K, Beckham G T, et al. Energy & Environmental Science, 2021, 14, 262. 8 Feng H X, Tu Y. Journal of Qingdao University (Natural Science Edition), 2018, 31(1), 46(in Chinese). 冯鹤翔, 涂轶. 青岛大学学报(自然科学版), 2018, 31(1), 46. 9 Kang X, Kirui A, Dickwella M C. Nature Communications, 2019, 10, 347. 10 Mottiar Y, Vanholme R, Boerjan W, et al. Current Opinion in Biotechnology, 2016, 37, 190. 11 Ralph J. Phytochemistry Reviews, 2010, 9, 65. 12 Molinari H B, Pellny T K, Freeman J, et al. Frontiers in Plant Science, 2013, 4, 50. 13 Jiang B, Jiao H, Guo X Y, et al. Advanced Science, 2023,10, 2206055. 14 Yuan T Q, Sun Z H, Dai L. Lignin chemistry, China Light Industry Press Ltd., China, 2021 (in Chinese). 袁同琦, 孙卓华, 戴林. 木质素化学, 中国轻工业出版社, 2021. 15 Xu Z M, Nakamura H, Akiyama T, et al. Journal of Wood Chemistry and Technology, 2021, 41(2-3), 118. 16 Jiang B, Cao T Y, Gu F, et al. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(6), 135 (in Chinese). 姜波, 曹婷月, 谷峰, 等. 南京林业大学学报(自然科学版), 2016, 40(6), 135. 17 Mandlekar N, Cayla A, Rault F, et al. Lignins: trends and applications, Poletto, ed., InTechOpen, London, 2018, pp. 207. 18 Li S, Yuan S, Zhu J, et al. Additive Manufacturing, 2020, 36, 101406. 19 Dang Y, Zhang M Y, Cheng Y N, et al. Technology Innovation and Application, 2022, 12(24), 166 (in Chinese). 党乐, 张梦雨, 成艳娜, 等. 科技创新与应用, 2022, 12(24), 166. 20 Chua C K, Leong K F, Lim C S. Rapid prototyping: principles and applications in manufacturing, World Scientific, Singapore, 2003. 21 Park S, Shou W, Makatura L, et al. Matter, 2022, 5, 43. 22 Liu Y Z J, Xia C L, Zhang J, et al. Engineering Plastics Application, 2017, 45(3), 130 (in Chinese). 刘洋子健, 夏春蕾, 张均, 等. 工程塑料应用, 2017, 45(3), 130. 23 Lind J U, Busbee T A, Valentine A D, et al. Nature Materials, 2017, 16, 303. 24 Geng Y, He H, Jia Y, et al. Polymer Composites, 2019, 40, 3375. 25 Bui, J C, Davis J T, Esposito D V. Sustainable Energy Fuels, 2020, 4, 213. 26 Raney J R, Compton B G, Mueller J, et al. PNAS, 2018, 115, 1198. 27 Wu S, Yang C, Hsu W, et al. Microsystems & Nanoengineering, 2015, 1, 15013. 28 Ligon S C, Liska R, Stampfl J, et al. Chemical Reviews, 2017, 117, 10212. 29 Yang H, Du J, Tang T, et al. New Chemical Materials, 2022, 50(9), 30 (in Chinese). 杨宏伟, 杜江华, 杨婷婷, 等. 化工新型材料, 2022, 50(9), 30. 30 Sikder P, Challa B T, Gummadi S K. Materialia, 2022, 22, 101427. 31 Sadeghifar H, Ragauskas A J. ACS Sustainable Chemistry & Enginee-ring, 2020, 8, 8086. 32 Bova T, Tran C D, Balakshin M Y, et al. Green Chemistry, 2016, 18, 5423. 33 Sun Q, Khunsupat R, Akato K, et al. Green Chemistry, 2016, 18, 5015. 34 Nguyen N A, Barnes S H, Bowland C C, et al. Science Advances, 2018, 4, eaat4967. 35 Holmberg A L, Nguyen N A, Karavolias M G, et al. Macromolecules, 2016, 49, 1286. 36 Holmberg A L, Reno K H, Nguyen N A, et al. ACS Macro Letters, 2016, 5, 574. 37 Akato K, Tran C D, Chen J, et al. ACS Sustainable Chemistry & Engineering, 2015, 3, 3070. 38 Tran C D, Chen J, Keum J K, et al. Advanced Functional Materials, 2016, 26, 2677. 39 Nguyen N A, Meek K M, Bowland C C, et al. Macromolecules, 2018, 51(1), 115. 40 Crestini C, Lange H, Sette M, et al. Green Chemistry, 2017, 19, 4104. 41 Yu Q, Bahi A, Ko F. Macromolecular Materials and Engineering, 2015, 300, 1023. 42 Wasti S, Triggs E, Farag R, et al. Composites Part B:Engineering, 2021, 205, 108483. 43 Mohan D, Bakir A N, Sajab M S, et al. Polymer Composites, 2021, 42, 2408. 44 Vaidya A A, Collet C, Gaugler M, et al. Materials Today Communications, 2019, 19, 286. 45 Morales G M. Structure and properties of alkali lignin modified by bacterial laccase and its application in 3D printing. Ph. D. Thesis, Jiangsu University, China, 2021(in Chinese). Morales G M. 细菌漆酶对碱木质素的结构和性能的改性及其在3D打印中的应用研究. 博士学位论文, 江苏大学, 2021. 46 Kubo S, Kadla J F. Biomacromolecules, 2005, 6(5), 2815. 47 Nguyen N A, Bowland C C, Naskar A K. Applied Materials Today, 2018, 12, 138.