Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24070065-7    https://doi.org/10.11896/cldb.24070065
  无机非金属及其复合材料 |
二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性
苗瑞霞*, 贾小坛, 牛佳美, 晏杰
西安邮电大学电子工程学院,西安 710121
Electronic Structure and Optical Properties of Two-dimensional Janus Ga2SSe/β-Ga2O3 Heterojunction Under Biaxial Strain Modulation
MIAO Ruixia*, JIA Xiaotan, NIU Jiamei, YAN Jie
College of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
下载:  全 文 ( PDF ) ( 17700KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维Janus过渡金属二硫族化物(MXY结构)已被用于与β-Ga2O3构建异质结来改善β-Ga2O3的光电性能,但是具有M2XY结构的Ⅲ-Ⅵ族Janus硫族化物与β-Ga2O3接触形成异质结的研究鲜有报道。本研究探索了Ga2SSe/β-Ga2O3异质结的电子结构与光吸收特性,并研究了双轴应变对该异质结性能的影响。研究结果表明:(1)异质结Ga2SSe(-Se)/β-Ga2O3相比于Ga2SSe(-S)/β-Ga2O3有较低的隧穿势垒以及更高的传输效率;同时异质结在紫外光区域的光吸收能力显著增强。(2)双轴应变对异质结的带隙类型、载流子有效质量以及光吸收性能的影响较显著。在-8%到8%的双轴应变下,异质结带隙随应变的增大而减小,带隙值在0.2~1.43 eV较宽范围可调;异质结的电子有效质量从0.376 eV缓慢减小至0.258 eV,而空穴有效质量在压缩应变为-2%时发生骤降,说明压缩应变对空穴有效质量影响更显著;此外,在拉伸应变下,异质结的光吸收能力从红外到紫外区较压缩应变时明显增强。本研究不仅揭示了Ga2SSe/β-Ga2O3异质结的优异性能,还为高性能光电器件的设计提供了新思路和理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苗瑞霞
贾小坛
牛佳美
晏杰
关键词:  β-Ga2O3  Ⅱ型范德华异质结  双轴应变调控  光电特性    
Abstract: Two-dimensional Janus TMDs (MXY structure) have been used to construct heterojunctions with β-Ga2O3 to improve the optoelectronic pro-perties of β-Ga2O3, but there are few reports on the research of forming heterostructures by contacting β-Ga2O3 with Janus chalcogenides of group III-VI with M2XY structure. In this study, the electronic structure and optical absorption characteristics of the Ga2SSe/β- Ga2O3 heterojunction were thoroughly investigated. Additionally, the impact of biaxial strain on the performance of this heterojunction was analyzed emphatically. The research results are as follows. First, Compared to Ga2SSe(-S)/β-Ga2O3, the heterojunction Ga2SSe(-Se)/β-Ga2O3 exhibits a lower tunneling barrier and a higher transmission efficiency, and the optical absorption of the heterojunction is significantly enhanced in the ultraviolet region. Second, Biaxial strain significantly impacts the bandgap, carrier effective masses, and optical absorption performance of the heterojunction. Under biaxial strain ranging from -8% to 8%, the heterojunction′s bandgap decreases with increasing strain, adjustable within a wide range of 0.2 eV to 1.43 eV. The electron effective mass gradually decreases from 0.376 eV to 0.258 eV, while the hole effective mass undergoes a sharp drop at -2% compressive strain, indicating a more pronounced effect of compressive strain on the hole effective mass. In addition, the optical absorption capacity of the heterojunction from infrared to ultraviolet region is significantly enhanced under tensile strain compared with that under compressive strain. This study not only reveals the excellent performance of Ga2SSe/β-Ga2O3 heterojunction, but also provides new ideas and theoretical support for the design of high-performance optoelectronic devices.
Key words:  β-Ga2O3    type II van der Waals heterojunction    biaxial strain modulation    optoelectronic property
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  O469  
基金资助: 国家自然科学基金(51302215)
通讯作者:  * 苗瑞霞,博士,西安邮电大学电子工程学院副教授、硕士研究生导师。目前主要从事二维半导体材料与器件等方面的研究工作。miao9508301@163.com   
引用本文:    
苗瑞霞, 贾小坛, 牛佳美, 晏杰. 二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性[J]. 材料导报, 2025, 39(14): 24070065-7.
MIAO Ruixia, JIA Xiaotan, NIU Jiamei, YAN Jie. Electronic Structure and Optical Properties of Two-dimensional Janus Ga2SSe/β-Ga2O3 Heterojunction Under Biaxial Strain Modulation. Materials Reports, 2025, 39(14): 24070065-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070065  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24070065
1 Chen H, Li Z, Zhang Z, et al. Semiconductor Science and Technology, 2024, 39, 063001.
2 Guo D, Guo Q, Chen Z, et al. Materials Today Physics, 2019, 11, 100157.
3 Xu J, Zheng W, Huang F. Journal of Materials Chemistry C, 2019, 7, 8753.
4 Onuma T, Nakata Y, Sasaki K, et al. Journal of Applied Physics, 2018, 124, 7.
5 Shi Q, Wang Q, Zhang D, et al. Journal of Luminescence, 2019, 206, 53.
6 Tian W, Sun H, Chen L, et al. InfoMat, 2019, 1, 140.
7 Tran H, Pham T, Margetis J, et al. ACS Photonics, 2019, 6, 2807.
8 Kim J, Mastro M A, Tadjer M J, et al. ACS Applied Materials & Interfaces, 2018, 10, 29724.
9 Kong W Y, Wu G A, Wang K Y, et al. Advanced Materials, 2016, 28, 10725.
10 Wu D, Zhao Z, Lu W, et al. Nano Research, 2021, 14, 1973.
11 Xiao Y, Liu W, Liu C, et al. Applied Surface Science, 2020, 530, 147276.
12 Kim J, Mastro M A, Tadjer M J, et al. ACS Applied Materials & Interfaces, 2017, 9, 21322.
13 Lin R, Zheng W, Zhang D, et al. ACS Applied Materials & Interfaces, 2018, 10, 22419.
14 Zhuo R, Wu D, Wang Y, et al. Journal of Materials Chemistry C, 2018, 6, 10982.
15 Yuan H, Su J, Zhang P, et al. Materials Today Physics, 2021, 21, 100549.
16 Zhang R, Li M, Wu G, et al. Results in Physics, 2023, 52, 106916.
17 Chen H, Zhao J, Wang X, et al. Nanoscale, 2022, 14, 5551.
18 Wu X, Xie Z, Zhang Y, et al. Journal of Materials Chemistry C, 2023, 11, 13924.
19 Bui H D, Jappor H R, Hieu N N. Superlattices and Microstructures, 2019, 125, 1.
20 Li L, Zhao C, Zhang Y, et al. Nanotechnology, 2022, 33, 465703.
21 Paier J, Hirschl R, Marsman M, et al. The Journal of Chemical Physics, 2005, 122, 23.
22 Mortensen J J, Hansen L B, Jacobsen K W. Physical Review B, 2005, 71, 035109.
23 Vanderbilt D. Physical Review B, 1990, 41, 7892.
24 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188.
25 Grimme S, Antony J, Ehrlich S, et al. The Journal of Chemical Physics, 2010, 132, 15.
26 Hou C, Gazoni R, Reeves R, et al. Applied Physics Letters, 2019, 114, 3.
27 Bai Y, Zhang Q, Xu N, et al. Applied Surface Science, 2019, 478, 522.
28 Bermudez V. Chemical Physics, 2006, 323, 193.
29 Huang A, Shi W, Wang Z. The Journal of Physical Chemistry C, 2019, 123, 11388.
30 Yan X, Esqueda I S, Ma J, et al. Applied Physics Letters, 2018, 112, 3.
31 Zhong Q, Dai Z, Liu J, et al. Physica E:Low-dimensional Systems and Nanostructures, 2020, 115, 113683.
32 Deng S, Li L, Rees P. ACS Applied Nano Materials, 2019, 2, 3977.
33 Song W, Chen J, Li Z, et al. Advanced Materials, 2021, 33, 2101059.
34 Wang G, Tang W, Xie W, et al. Applied Surface Science, 2022, 589, 152931.
35 Wang G, Tang W, Xu C, et al. Applied Surface Science, 2022, 599, 153960.
36 Tho C C, Yu C, Tang Q, et al. Advanced Materials Interfaces, 2023, 10, 2201856.
37 Shen T, Ren J C, Liu X, et al. Journal of the American Chemical Society, 2019, 141, 3110.
38 Bader R F. Chemical Reviews, 1991, 91, 893.
39 Lalitha S, Karazhanov S Z, Ravindran P, et al. Physica B:Condensed Matter, 2007, 387, 227.
40 Guo Z, Miao N, Zhou J, et al. Journal of Materials Chemistry C, 2017, 5, 978.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[3] 自兴发, 叶青, 刘瑞明, 程满, 黄文卿, 何永泰. N掺杂Cu2O薄膜的低温沉积及快速热退火研究*[J]. 《材料导报》期刊社, 2017, 31(16): 21-25.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed