Study on Constructing the Interface Built-in Electric Fields Through In-situ Growth of WO3/Bi2WO6 to Enhance the Charge Separation and Transfer of Photoelectrodes
ZHANG Banchao1, CHENG Houyan2,3,*
1 School of Art & Design, Zhengzhou University of Light Industry, Zhengzhou 450002, China 2 Chinese Academy of Agricultural Mechanization Science Group Co., Ltd., Beijing 100083, China 3 Beijing Jinlunkuntian Special Machine Co., Ltd., Beijing 100083, China
Abstract: Photoelectrocatalysis is considered a crucial energy storage technology for converting solar energy into renewable energy sources. The photoelectrochemical reaction efficiency is controlled by light harvesting, charge separation and transfer (CST), and surface reaction efficiency, with CST being particularly critical. WO3-based photocatalytic materials have garnered widespread attention due to high chemical stability, long hole diffusion distance, and moderate bandgap. However, the low efficiency of CST in WO3-based photocatalytic materials remains a challenge, hampering their practical applications. To address this issue, this work uses a method of in-situ growth to coat Bi2WO6 on the surface of WO3 to form a heterojunction and construct built-in electric fields at the interface to effectively improve the driving force of photogenerated charge separation and transmission. The results showed that the WO3/Bi2WO6 composite photoanode film has a type Ⅱ heterojunction structure, and its surface photovoltage reaches 8.7 μV, which is 142% and 81% higher than those of WO3 and Bi2WO6, respectively. The photocurrent density is 3.28 mA·cm-2 @1.23 V vs. RHE, which is 91% and 143% higher than those of WO3 and Bi2WO6, respectively.
张颁潮, 程厚燕. 原位生长WO3/Bi2WO6构筑界面内建电场增强光电极电荷分离与传输的研究[J]. 材料导报, 2025, 39(19): 24120134-8.
ZHANG Banchao, CHENG Houyan. Study on Constructing the Interface Built-in Electric Fields Through In-situ Growth of WO3/Bi2WO6 to Enhance the Charge Separation and Transfer of Photoelectrodes. Materials Reports, 2025, 39(19): 24120134-8.
1 Walter M, Warren E, McKone J, et al. Chemical Reviews, 2010, 110, 6446. 2 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38, 253. 3 Wang X, Wang Z, Yu W, et al. Materials Reports, 2024, 38(2), 55 (in Chinese). 王雪怡, 王智远, 余伟, 等. 材料导报, 2024, 38(2), 55. 4 Zhan F, Wen G, Li R, et al. Physical Chemistry Chemical Physics, 2024, 26, 11182. 5 Yu S, Yang, J, Yang X, et al. Materials Reports, 2023, 37(4), 44 (in Chinese). 于舒睿, 杨继凯, 杨雪, 等. 材料导报, 2023, 37(4), 44. 6 Li W, Da P, Zhang Y, et al. ACS Nano, 2014, 8, 11770. 7 Fujishima A. Nature, 1972, 238, 37. 8 Landman A, Dotan H, Shter G. E, et al. Nature Materials, 2017, 16, 646. 9 Zheng G, Wang J, Liu H, et al. Nanoscale, 2019, 11, 18968. 10 Ni S, Qu H, Xing H, et al. Chinese Journal of Chemical Engineering, 2022, 41, 320. 11 Cheng Z, Hu Z, Ma X, et al. The Journal of Physical Chemistry C, 2022, 126, 11510. 12 Yi S, Wulan B, Yan J, et al. Advanced Functional Materials, 2019, 29, 1801902. 13 Pan Q, Zhang C, Xiong Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 6378. 14 Li Y, Wu Q, Bu Q, et al. Chinese Journal of Catalysis, 2021, 42, 762. 15 Mali M, Yoon H, Kim M, et al. Applied Physics Letters, 2015, 106, 151603. 16 Zargazi M, Entezari M. Applied Catalysis B, 2019, 242, 507. 17 Zhou Y, Zhang Y, Lin M, et al. Nature Communications, 2015, 6, 8340. 18 Cai F, Xu Y, Long H, et al. China Environmental Science, 2024, 44, 4652 (in Chinese). 蔡奉颖, 许煜航, 龙浩然, 等. 中国环境科学, 2024, 44(8), 4652. 19 Pancielejko A, Łuczak J, Lisowski W, et al. Applied Surface Science, 2021, 569, 151082. 20 Liu C, Yang Y, Li J, et al. Chemical Engineering Journal, 2017, 326, 603. 21 Zhang M, Zhu Y, Li W, et al. Journal of Colloid and Interface Science, 2018, 509, 18. 22 Peleyeju M, Viljoen. Journal of Water Process Engineering, 2021, 40, 101930. 23 Zhang X, Chen J, Jiang S, et al. Journal of Colloid and Interface Science, 2021, 588, 122. 24 Zhu Z, Yan Y, Li J. Journal of Materials Science, 2015, 51, 2112. 25 Gui M, Zhang W, Chang Y, et al. Chemical Engineering Journal, 2012, 197, 283. 26 Wang J, Cheng H, Cui Y, et al. ACS Nano, 2022, 16, 21248. 27 Sungpanich J, Thongtem T, Thongtem S. Journal of Nanomaterials, 2014, 2014, 1. 28 Mohamedkhair A, Drmosh Q, Qamar M, et al. Catalysts, 2021, 11, 381. 29 Huang Y, Kou S, Zhang X, et al. Nanomaterials, 2020, 10(4), 724. 30 Zhan F, Zhao H, Wen G, et al. New Journal of Chemistry, 2023, 47(4), 1620. 31 Wang S, Wang L. Tungsten, 2019, 1, 19. 32 Chen T, Liu L, Hu C, et al. Chinese Journal of Catalysis, 2021, 42, 1413. 33 Chung H, Toe C, Chen W, et al. Small, 2021, 17, e2102023. 34 Yang P, Sun P, Chai Z, et al. Angewandte Chemie International Edition, 2014, 53, 11935. 35 Zhang L, Wang W, Sun S, et al. Applied Catalysis B, 2015, 168-169, 9. 36 Yang J, Ge C, Du J, et al. Advanced Materials, 2018, 30, e1801548. 37 Cai G, Zhu R, Liu S, et al. Advanced Energy Materials, 2021, 2103106. 38 Zhang L, Wang Y, Cheng H, et al. Advanced Materials, 2009, 21, 1286. 39 Xing Z, Hu J, Ma M, et al. Journal of the American Chemical Society, 2019, 141, 19715. 40 Qi R, Liu J, Yuan H, et al. Nanomaterials, 2021, 11, 2221. 41 Li R, Zhan F, Wen G, et al. Catalysts 2024, 14, 828. 42 Zheng J, Song G, Hong J, et al. Crystal Growth & Design, 2014, 14, 6057. 43 Liu Y, Yang Y, Liu Q, et al. Journal of Colloid and Interface Science, 2018, 512, 86. 44 Paik T, Cargnello M, Gordon T, et al. ACS Energy Letters, 2018, 3, 1904. 45 Gurwitz R, Cohen R, Shalish I. Journal of Applied Physics, 2014, 115, 033701. 46 Zhang R, Song C, Kou M, et al. Environmental Science & Technology, 2020, 54, 3691. 47 Liu Y, Cheng M, He Z, et al. Angewandte Chemie International Edition, 2018, 58, 731. 48 Chen R, Fan F, Dittrich T, et al. Chemical Society Reviews, 2018, 47, 8238. 49 Han T, Cao X, Sun K, et al. Nature Communications, 2021, 12, 4952. 50 Hussain Z. Journal of Applied Physics, 2002, 91, 5745. 51 Kim D, Yong K. Applied Catalysis B, 2021, 282, 119538. 52 Salazar-Marín D, Oza G, Real J, et al. Applied Surface Science Advances, 2024, 19, 100536.