Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 25040015-5    https://doi.org/10.11896/cldb.25040015
  高分子与聚合物基复合材料 |
基于高固相含量溶胶的C/Mullite复合材料氧化与热震行为研究
张伟1,2, 马青松1,*, 曾宽宏1, 王为得1, 毛卫国2,*
1 国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 长沙理工大学材料科学与工程学院,长沙 410114
Oxidation and Thermal Shock Behaviors of C/Mullite Composites Based on a Sol with High Soild Content
ZHANG Wei1,2, MA Qingsong1,*, ZENG Kuanhong1, WANG Weide1, MAO Weiguo2,*
1 Science and Technology on Advanced Ceramic Fibers & Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 22588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 得益于碳纤维的补强增韧,连续碳纤维增强莫来石(C/mullite)复合材料在航空航天热结构材料领域具有广阔的应用前景。为了进一步厘清C/mullite复合材料在服役环境下的失效行为,本工作系统研究了其在1 300 ℃的氧化行为与1 300~1 500 ℃的热震行为。结果表明,1 300 ℃时随着氧化时长增加,C/mullite复合材料的失重逐渐增加,力学性能逐渐衰退,其主要原因在于复合材料表面SiO2的粘性流动效果不佳。氧化和热交变的耦合作用使得C/mullite复合材料在1 300 ℃热震10次(总氧化时长约50 min)后性能明显低于其在1 300 ℃氧化60 min。此外,由于1 500 ℃时C/mullite表面SiO2的粘性流动效应增强,复合材料在1 400 ℃和1 500 ℃热震后失重和性能没有明显差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张伟
马青松
曾宽宏
王为得
毛卫国
关键词:  C/mullite复合材料  氧化  热震  力学性能  SiO2粘性流动    
Abstract: Owing to the reinforcement and toughening of carbon fibers, carbon fiber reinforced mullite (C/mullite) composites have found broad applicative prospect as thermal-structural materials in the field of aeronautics and astronautics. In order to further clarify the failure behavior of C/mullite composites in service conditions, the oxidation behavior of a C/mullite composite at 1 300 ℃ and thermal shock behavior of the composites at 1 300—1 500 ℃ were investigated systematically in the present work. The results indicated that the composite showed increased weight loss and decreased mechanical properties as the oxidation time was elevated to 1 300 ℃, which could be ascribed to the poor viscous flow effect of SiO2 on the surface of the composite. Under the coupling effect of oxidation-heating alternations, the mechanical properties of the C/mullite composite subjected thermal shock at 1 300 ℃ for 10 cycles (with a total oxidation duration of about 50 min) were found to be significantly lower than that of the composite experienced oxidation at 1 300 ℃ for 60 min. Furthermore, the enhanced viscous flow effect of SiO2 on the surface of C/mullite composite at 1 500 ℃ led to inconspicuous difference in weight loss and mechanical properties between the composites subjected to thermal shock at 1 400 ℃ and 1 500 ℃.
Key words:  C/mullite composite    oxidation    thermal shock    mechanical properties    viscous flow of SiO2
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TB332  
基金资助: 湖南省自然科学基金(2024JJ6043);国防科技基础加强计划资助项目(2022-JCJQ-LB-073-01-01)
通讯作者:  *马青松,博士,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室研究员、博士研究生导师。长期致力于陶瓷基复合材料技术研究。nudtmqs1975@163.com
毛卫国,博士,长沙理工大学材料科学与工程学院二级教授,博士研究生导师。长期从事高端装备用先进涂层材料、复合材料的制备及性能评价。ssamao@126.com   
作者简介:  张伟,博士,长沙理工大学材料科学与工程学院讲师、硕士研究生导师。目前主要从事纤维增强氧化物陶瓷基复合材料技术研究。
引用本文:    
张伟, 马青松, 曾宽宏, 王为得, 毛卫国. 基于高固相含量溶胶的C/Mullite复合材料氧化与热震行为研究[J]. 材料导报, 2025, 39(19): 25040015-5.
ZHANG Wei, MA Qingsong, ZENG Kuanhong, WANG Weide, MAO Weiguo. Oxidation and Thermal Shock Behaviors of C/Mullite Composites Based on a Sol with High Soild Content. Materials Reports, 2025, 39(19): 25040015-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25040015  或          https://www.mater-rep.com/CN/Y2025/V39/I19/25040015
1 Schneider H, Schreuer J, Hildmann B. Journal of the European Ceramic Society, 2008, 28, 329.
2 Schneider H, Fischer R X, Schreuer J. Journal of the American Ceramic Society, 2015, 98, 2948.
3 Schneider H, Komarneni S. Mullite, Wiley-VCH, Germany, 2005, pp.310.
4 Wang Y, Zhang A, Li G D, et al. Applied Composite Materials, 2021, 28, 321.
5 Liu D Z, Tan M Y, Fang C, et al. Ceramics International, 2019, 45, 304.
6 Tian Z H, Sun X, Deng G H, et al. Applied Composite Materials, 2021, 28, 767.
7 Pan H J, Luo F, Qing Y C, et al. Ceramics International, 2024, 50, 12405.
8 Liu H T, Ma Q S, Liu W D. Ceramics International, 2014, 40, 7203.
9 Yang L W, Liu H T, Jiang R, et al. Journal of the European Ceramic Society, 2017, 37, 2991.
10 Zhang W, Ma Q S, Dai K W, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 2248.
11 Zhang W, Ma Q S, Zeng K H, et al. Journal of Advanced Ceramics, 2019, 8, 218.
12 Zhang W, Ma Q S, Zeng K H, et al. Ceramics International, 2021, 47, 6623.
13 Zhang W, Ma Q S, Zeng K H, et al. Applied Composite Materials, 2024, 31, 1441.
14 Zhang W, Ma Q S, Zeng K H, et al. Ceramics International, 2024, 50, 41327.
15 Zhang W, Ma Q S, Zeng K H, et al. Ceramics International, 2020, 46, 9924.
16 Liang S L. Properties and failure behaviors of continuous carbon fiber reinforced mullite matrix composites. Master's Thesis, National University of Defense Technology, China, 2015 (in Chinese).
梁松林. 连续碳纤维增强莫来石基复合材料的性能与失效行为研究. 硕士学位论文, 国防科学技术大学, 2015.
17 Yin X W. Oxidation behaviors of 3D C/SiC composites in oxidizing environments. Ph. D. Thesis, Northwestern Polytechnical University, China, 2001 (in Chinese).
殷小玮. 3D C/SiC复合材料的环境氧化行为. 博士学位论文, 西北工业大学, 2001.
18 Sambell R A J, Briggs A, Phillips D C, et al. Journal of Materials Science, 1972, 7, 676.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[8] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[9] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[10] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[11] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[12] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[13] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[14] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[15] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed