Research Progress of Aqueous Ammonium-ion Batteries
SUN Shumin1, LEI Haibo1, LYU Shuhu1, WANG Peiyuan1,2,*, CAO Xia1,3,*
1 School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China 2 Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China 3 Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration of Henan Province, Zhengzhou 450001, China
Abstract: In recent years, battery technology has been widely applied in consumer electronic devices, new energy vehicles, and various energy sto-rage systems. However, the safety concerns associated with conventional batteries during usage have increasingly attracted attention. Compared to batteries using organic electrolytes, novel aqueous batteries are gradually emerging as a significant research direction in the energy sto-rage field due to their unique safety advantages and environmental benefits. In contrast to the commonly studied metal ions (such as Li+, Na+, Zn2+), NH4+ has become a research hotspot for aqueous ammonium ion batteries (AAIBs) owing to its abundant sources, low molar mass, and significantly smaller hydrated ion radius compared to the aforementioned metal ions. Although various electrode materials (including inorganic and organic materials) have been developed as carriers for NH4+ storage and some progress has been made in AAIBs research, these materials still face numerous challenges and limitations in practical testing and applications. This paper systematically reviews the recent research progress in AAIBs. It first outlines the basic principles and characteristics of AAIBs, then elaborates on the latest achievements from the perspectives of ca-thode materials, anode materials, and electrolytes, and finally summarizes and prospects the development prospects, existing problems, and potential solutions for AAIBs, aiming to provide references for promoting in-depth research on AAIBs and their electrode materials.
1 Khademi M M, Kasaeian. Energy, 2025, 314, 134259. 2 Kyei K S, Boateng K H, Frimpong A J. Clean Energy, 2025, 9(2), 190. 3 Wu K, Ning F, Yi J, et al. Journal of Energy Chemistry, 2022, 69, 237. 4 Li Q, Han L, Luo Q, et al. Batteries & Supercaps, 2022, 5(4), e202100417. 5 Yi J, Liu Y, Qiao Y, et al. ACS Energy Letters, 2017, 2(6), 1378. 6 Braff W A, Mueller J M, Trancik J E. Nature Climate Change, 2016, 6(10), 964. 7 Guerra O J, Zhang J, Eichman J, et al. Energy & Environmental Science, 2020, 13(7), 1909. 8 Fornalczyk A, Turek S A, Zielinska A, et al. Energies, 2025, 18, 398. 9 Karimianfard H. Journal of Energy Storage, 2025, 110, 115259. 10 Kim H, Kim H, Ding Z, et al. Advanced Energy Materials, 2016, 6(19), 1600943. 11 Yang Y, Bremner S, Menictas C, et al. Renewable and Sustainable Energy Reviews, 2018, 91, 109. 12 Chombo P V, Laoonual Y. Journal of Power Sources, 2020, 478, 228649. 13 Huang J, Guo Z, Ma Y, et al. Small Methods, 2018, 3(1), 1800272. 14 Pu W J, Lu W, Xie K, et al. Materials Reports, 2020, 34(7), 7036 (in Chinese). 浦文婧, 芦伟, 谢凯, 等. 材料导报, 2020, 34(7), 7036. 15 Zhu M, Li X, Shi C, et al. Journal of Energy Storage, 2024, 101, 113686. 16 Liu J, Guo K, Guo W, et al. Angewandte Chemie International Edition, 2025, 64, e202424494. 17 Itaya K, Ataka T, Toshima S. Journal of the American Chemical Society, 1982, 104(18), 4767. 18 Hermes M, Scholz F. Journal of Solid State Electrochemistry, 1997, 1(3), 215. 19 Yegnaraman V, Kim K J, Gomathi H, et al. The Journal of Physical Chemistry B, 2008, 112(4), 1149. 20 Wessells C D, Peddada S V, McDowell M T, et al. Journal of the Electrochemical Society, 2011, 159(2), A98. 21 Wu Y, Xu Z, Nan L, et al. ACS Applied Materials & Interfaces, 2023, 15(9), 12434. 22 Shu J, Zhang X K, Xia M T, et al. Nano-Micro Letters, 2021, 13, 139. 23 Dong S Y, Shin W, Jiang H, et al. Chemistry-a European Journal, 2019, 5(6), 1537. 24 Xiang K X, Xing L, Chen H, et al. Journal of Alloys and Compounds, 2022, 925, 166652. 25 Wu Q L, Xu W W, Zhang L, et al. Electrochimica Acta, 2020, 360, 137008. 26 Song Y, Pan Q, Lv H, et al. Angewandte Chemie Internatianal Edition, 2021, 60(11), 5718. 27 Liu X X, Yang D, Song Y, et al. Advanced Functional Materials, 2021, 31(32), 2100477. 28 Herren F, Fischer P, Ludi A, et al. Inorganic Chemistry, 1980, 19, 956. 29 Shu J, Zhang X K, Xia M T, et al. Chemical Engineering Journal, 2021, 421, 127767. 30 Zhang P, Zhang X, Liu D, et al. Batteries & Supercaps, 2024, 7(3), e202300546. 31 Fan L, Shu G, Liu Y, et al. Journal of Materials Science & Technology, 2024, 169, 19. 32 Hu L F, Liu Q, Zhang D Z, et al. Advanced Energy Materials, 2025, 15(4), 2402863. 33 Zhang Y, Huang Z H, Lei L, et al. Advanced Energy Materials, 2025, 15(11), 2404732. 34 Bai X, Yang J, Zhang F, et al. Dalton Transactions, 2023, 52(15), 4923. 35 Mu X J, Song Y, Qin Z, et al. Chemical Engineering Journal, 2023, 453, 139575. 36 Zhou G Y, An X Y, Zhou C Y, et al. Composites Communications, 2020, 22, 100519. 37 Qiu S, Xu Y K, Li X, et al. Electrochemistry Communications, 2021, 122, 106880. 38 Ding J, Chen H, Lou X M, et al. Ionics, 2023, 29(12), 5275. 39 Yu H X, Fan L Y, Yan H H, et al. Chemelectrochem, 2022, 9(15), e202200492. 40 Li S Y, Xia M T, Xiao C X, et al. Dalton Transactions, 2021, 50(19), 6520. 41 Shen Y H, Zou J, Lan H H, et al. Advanced Functional Materials, 2024, 2400598. 42 Holoubek J J, Jiang H, Leonard D, et al. Chemical Communications, 2018, 54(70), 9805. 43 Han J, Zarrabeitia M, Mariani A, et al. Advanced Materials, 2022, 34(32), 2201877. 44 Yang C Y, Chen J, Qing T T, et al. Joule, 2017, 1(1), 122. 45 Huang S, Wan F, Bi S S, et al. Angewandte Chemie International Edition, 2019, 58(13), 4313. 46 Wang Z F, Li H F, Tang Z J, et al. Advanced Functional Materials, 2018, 28(48), 1804560. 47 Kwon H J, Osada Y, Gong J P. Polymer Journal, 2006, 38(12), 1211. 48 Zhi C Y, Liang G J, Wang Y L, et al. Advanced Materials, 2020, 32(14), 1907802. 49 Wang P, Zhang Y F, Jiang H M, et al. Chemical Engineering Journal, 2022, 427, 131548.