Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24100182-15    https://doi.org/10.11896/cldb.24100182
  金属与金属基复合材料 |
增材制造铝合金组织结构与性能研究进展
梁文杰, 董强胜*, 章晓波
南京工程学院材料科学与工程学院,南京 211167
Research Progress on Microstructure and Properties of Additive-manufactured Aluminum Alloys
LIANG Wenjie, DONG Qiangsheng*, ZHANG Xiaobo
School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
下载:  全 文 ( PDF ) ( 95226KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,增材制造(Additive manufacturing,AM)技术因高效近净成形特征成为制造业领域的研究和应用热点。与传统材料加工方式相比,增材制造技术基于分层-叠加的原理,能够定制特殊形状和尺寸的零部件,且具有缩短零件生产周期、减少材料消耗等特点。考虑到铝合金在航空航天、轨道交通、新能源等领域的广泛应用,增材制造技术推动了复杂结构铝合金构件的快速发展。然而,铝合金在增材制造的快速凝固过程中常出现孔隙、裂纹和残余应力等问题,导致制件的力学性能和耐蚀性能下降。为突破铝合金增材制造的应用瓶颈,关键是开发适用于铝合金的增材制造技术,优化调控其组织结构与性能。本文综述了铝合金增材制造技术,包括选区激光熔化、电弧增材制造、搅拌摩擦增材制造和冷喷涂增材制造,归纳梳理了铝合金增材制造技术的研究现状与技术进展,总结分析了不同增材制造技术成形铝合金过程中关键工艺参数对合金构件组织结构和力学性能、耐腐蚀性能的影响,为铝合金增材制造技术和高性能铝合金制造提供了见解和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁文杰
董强胜
章晓波
关键词:  增材制造  铝合金  微观组织  力学性能  耐腐蚀性能    
Abstract: Recently, additive manufacturing (AM) technology has emerged as a prominent research and application in the manufacturing field due to its efficient near-net-shape forming. Compared with conventional material processing methods, AM, based on the layer-by-layer superposition principle, enables the customized design and preparation of parts with specialized shapes and dimensions along with shorter production cycles and reduced material consumption. Given the extensive application potential of aluminum alloys in aerospace, rail transit, new energy, and other fields, AM technology facilitates the rapid development and application of aluminum alloy components, even in intricate and complex structures. However, there are many issues in additive-manufactured aluminum alloys, such as porosity, cracking, and internal residual stress due to metal melting and rapid solidification during the AM process. These concomitant defects can degrade the mechanical and anti-corrosion properties of the parts. Therefore, advanced AM technologies for aluminum alloys are crucial to overcoming the application bottlenecks by optimizing the structure and properties. This paper reviewed the current state of AM technologies in aluminum alloys, including selective laser melting, wire arc additive manufacturing, friction stir additive manufacturing, and cold spray additive manufacturing. The research status and technological advancements of AM technologies of aluminum alloy are summarized, and the processing-structure-performance relationship in various AM technologies is analyzed. Moreover, this paper provided insight into AM technologies of aluminum alloys, and offered guidance for exploring high-performance aluminum alloys.
Key words:  additive manufacturing    aluminum alloy    microstructure    mechanical property    corrosion resistance
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  G146.2+1  
基金资助: 江苏省研究生科研与实践创新计划项目(SJCX24_1289);南京工程学院引进人才科研启动基金项目(YKJ202302)
通讯作者:  *董强胜,博士,南京工程学院材料科学与工程学院副教授、硕士研究生导师。主要从事金属材料表面工程、腐蚀与防护研究工作。qsdong@njit.edu.cn   
作者简介:  梁文杰,南京工程学院材料科学与工程学院硕士研究生,在章晓波教授和董强胜副教授的指导下进行研究。目前主要研究领域为铝合金电弧增材制造。
引用本文:    
梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
LIANG Wenjie, DONG Qiangsheng, ZHANG Xiaobo. Research Progress on Microstructure and Properties of Additive-manufactured Aluminum Alloys. Materials Reports, 2025, 39(19): 24100182-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100182  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24100182
1 Malikov A G, Golyshev A A, Vitoshkin I E. Journal of Applied Mechanics and Technical Physics, 2023, 64(1), 31.
2 Lu J W, Zhuo L C. International Journal of Refractory Metals and Hard Materials, 2023, 111, 106110.
3 Trivedi P, Vansjalia R, Erra S, et al. Arabian Journal for Science and Engineering, 2023, 48(3), 3269.
4 Kalemba-Rec I, Kopyscianski M, Miara D, et al. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8), 2767.
5 Fan X P, Chu X, Xie Y C, et al. Journal of Materials Research and Technology, 2023, 27, 4328.
6 Li Y P, Wang C R, Du X D, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(4), 969.
7 Li J F, Wei Z Y, Lu B H. Laser and Optoelectronics Progress, 2018, 55(1), 011403-1.
8 Lv J, Peng T, Zhang Y, et al. International Journal of Production Research, 2021, 59(8), 2375.
9 Jia Y Z, Huang N, Zhang J L, et al. International Journal of Advanced Manufacturing Technology, 2023, 128(7-8), 2797.
10 Wang Z L, Zhang Y B. Materials Science, 2021, 27(1), 18.
11 Rodrigues T A, Duarte V, Miranda R M, et al. Materials, 2019, 12(7), 1121.
12 Ashish K S, Vaibhaw D, Ambuj K R. Materials Today:Proceedings, 2021, 47(13), 4142.
13 Li W Y, Yang K, Yin S, et al. Journal of Materials Science and Technology, 2018, 34, 440.
14 Tan Q Y, Liu Y G, Fan Z Q, et al. Journal of Materials Science and Technology, 2020, 58, 34.
15 Hu Z W. High-strength aluminum alloy Al7075 additive manufacturing:microstructure and properties study. Master's Thesis, Guizhou University, China, 2021 (in Chinese).
胡中文. 高强度铝合金Al7075增材制造组织与性能研究. 硕士学位论文, 贵州大学, 2021.
16 Fan C J. Study on solidification defects and grain refinement in selective laser melting of 2024 aluminum alloy. Master's Thesis, Central South University, China, 2022 (in Chinese).
范朝劲. 选区激光熔化成形2024铝合金凝固缺陷与晶粒细化研究. 硕士学位论文, 中南大学, 2022.
17 Zhou H, Fu F, Dai Z, et al. Metals, 2020, 11(1), 3.
18 Wan D Y, Li X Q, Lai J M, et al. Applied Laser, 2019, 39(1), 1 (in Chinese).
万达远, 李小强, 赖佳明, 等. 应用激光, 2019, 39(1), 1.
19 Hu J Y, Liu P, Sun S Y, et al. Vacuum, 2020, 177, 109404.
20 Gong W Y, Qi J F, Wang Z, et al. 3rd International Symposium of Space Optical Instruments and Applications, 2018, 192, 113.
21 Lei Z L, Bi J, Chen Y B, et al. Powder Technology, 2019, 356, 594.
22 Liu T, Ge J B. Applied Laser, 2018, 38(3), 393.
23 Li F, Zhang T M, Wu Y Y, et al. Journal of Materials Science, 2022, 57(21), 9631.
24 Zhu H W, Liu W C, Jiang Z D, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(1), 1 (in Chinese).
朱浩文, 刘文才, 蒋志达, 等. 中国有色金属学报, 2024, 34(1), 1.
25 Deng J W, Chen C, Zhang W, et al. Materials, 2020, 13(19), 4423.
26 Gu T. Analysis of microstructure and properties in laser additive manufacturing of high-strength aluminum alloy Al 2024. Master's Thesis, Harbin Institute of Technology, China, 2021 (in Chinese).
谷涛. 高强度铝合金Al 2024激光增材制造组织与性能研究. 硕士学位论文, 哈尔滨工业大学, 2021.
27 Elambasseril J, Benoit M J, Zhu S M, et al. Progress in Additive Manufacturing, 2022, 7(5), 887.
28 Liu W, Huang S, Du S, et al. Micromachines, 2022, 13(7), 1059.
29 Zhu F, Wu H B, Zhu W Z, et al. Metallurgy and Materials, 2020, 40(4), 27 (in Chinese).
朱凡, 吴和保, 朱文志, 等. 冶金与材料, 2020, 40(4), 27.
30 Zhang S L, Wang J H, Li X F, et al. Rare Metals Letters, 2021, 40(4), 267 (in Chinese).
张双雷, 王建宏, 李晓峰, 等. 中国材料进展, 2021, 40(4), 267.
31 Zhang S H, Zhang S M, Li F D, et al. Metals, 2023, 13, 1520.
32 Iturrioz A, Gil E, Petite M M, et al. Welding in the World, 2018, 62(4), 885.
33 Wang L F, Sun J, Yu X L, et al. Materials Science and Engineering A, 2018, 734, 299.
34 Sun S Y, Liu P, Hu J Y, et al. Optics and Laser Technology, 2019, 114, 158.
35 Chen H, Zhang C, Jia D, et al. Metals, 2020, 10, 102.
36 Tiwari A, Singh G, Jayaganthan R. Coatings, 2023, 13(2), 225.
37 Chen Y X, Lin D Y, Shen X L, et al. Applied Surface Science Advances, 2024, 19, 100572.
38 Liu C Y, Wang Q, Cao X Y, et al. Materials Characterization, 2021, 181, 111479.
39 Li C Q, Deng Y S, Chen M C, et al. Materials Letters, 2023, 348, 134711.
40 Wang P, Gebert A, Yan L, et al. Intermetallics, 2020, 124, 106871.
41 Ding D H, Pan Z X, Cuiuri D, et al. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4), 465.
42 Williams S W, Martina F, Addison A C, et al. Materials Science and Technology, 2016, 32(7), 641.
43 Gress D R, Kalafsky R V. Geoforum, 2015, 60, 43.
44 Evans S I, Wang J, Qin J, et al. Structures, 2022, 44, 1506.
45 Ma Y, Wang T. Journal of Physics:Conference Series, 2023, 2587(1), 012105.
46 Qi Z W, Qi B J, Cong B Q, et al. Journal of Manufacturing Processes, 2019, 40, 27.
47 Tonelli L, Laghi V, Palermo M, et al. Progress in Additive Manufacturing, 2021, 6(3), 479.
48 Doumenc G, Couturier L, Courant B, et al. Materialia, 2022, 25, 101520.
49 Hu Z W, Xu P, Pang C, et al. Journal of Materials Engineering and Performance, 2022, 31(8), 6459.
50 Evstifeev A, Volosevich D, Smirnov I, et al. Materials, 2023, 16 (12), 4327.
51 Su C C, Chen X Z, Gao C, et al. Applied Surface Science, 2019, 486, 431.
52 Wang D H, Lu J P, Tang S Y, et al. Materials, 2018, 11(8), 1344.
53 Li S, Zhang L J, Ning J, et al. Additive Manufacturing, 2020, 34, 101206.
54 Chi Y T, Murali N, Liu J K, et al. Rapid Prototyping Journal, 2023, 29(7), 1341.
55 Ma G Y, Liu D H, Shi J A, et al. Aeronautical Manufacturing Technology, 2022, 65(Z1), 14 (in Chinese).
马广义, 刘德华, 师敬桉, 等. 航空制造技术, 2022, 65(Z1), 14.
56 Li S, Zhang L J, Ning J, et al. Journal of Materials Research and Technology, 2020, 9(6), 13770.
57 Qi Z W, Qi B J, Cong B Q, et al. Materials Letters, 2018, 233, 348.
58 Han Q F, Fu R, Hu J L, et al. Journal of Materials Engineering, 2022, 50(4), 62 (in Chinese).
韩启飞, 符瑞, 胡锦龙, 等. 材料工程, 2022, 50(4), 62.
59 Zhu K, Wang J, Zhang W C, et al. Transactions of Nonferrous Metals Society of China, 2024, 34(2), 423.
60 Kazmi K H, Sharma S K, Das A K, et al. Journal of Materials Engineering and Performance, 2023, 33(10), 5120.
61 Morais P J, Gomes B, Santos P, et al. Materials, 2020, 13(7), 1610.
62 Shen Z G, Wu Z S, Wang T, et al. Materials, 2023, 16(20), 6801.
63 Wei J X, He C S, Dong R F, et al. Materials Science and Engineering, 2024, 901, 146582.
64 Guo G X, Wei J X, Wu G Y, et al. Materials Letters, 2024, 370, 136844.
65 Cui J Y, Guo X P, Hao S A, et al. Materials Letters, 2023, 350, 134913.
66 Du Toit M, Mutombo K. Anti-Corrosion Methods and Materials, 2019, 66(6), 719.
67 Han F, Li C Y, Wang Y Z, et al. Journal of Materials Science and Technology, 2024, 30, 3178.
68 Manjhi S K, Kumar B S S, Rodrigues J P, et al. Transactions of the Indian Institute of Metals, 2023, 76(10), 2745.
69 He C S, Li Y, Zhang Z Q, et al. Materials Science and Engineering, 2020, 777, 139035.
70 Robinson T W, Williams M B, Rao H M, et al. Journal of Manufacturing Science and Engineering, 2022, 144, 061013.
71 Gopan V, Wins L D K, Surendran A. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 228.
72 Meng X C, Ma X T, Chang Y X, et al. Aeronautical Manufacturing Technology, 2023, 66(10), 60 (in Chinese).
孟祥晨, 马潇天, 常月鑫, 等. 航空制造技术, 2023, 66(10), 60.
73 Sheng H, Wang H F, Wang J B. Ordnance Material Science and Engineering, 2024, 47(6), 69 (in Chinese).
盛浩, 汪洪峰, 王建彬. 兵器材料科学与工程, 2024, 47(6), 69.
74 Garcia D, Wang T H, Sarvesha R, et al. JOM, 2023, 75(10), 4223.
75 Li Y D, Yang B B, Zhang M, et al. Corrosion Science, 2023, 213, 110972.
76 Martin L P, Luccitti A, Walluk M. International Journal of Advanced Manufacturing Technology, 2022, 118(3-4), 759.
77 Griffiths R J, Petersen D T, Garcia D, et al. Applied Sciences-Basel, 2019, 9, 3486.
78 Hassan A, Awang M, Pedapati S R, et al. Iranian Journal of Materials Science And Engineering, 2023, 20, 3361.
79 Zhu X H, Wang R, Wang L, et al. Crystals, 2024, 14, 581.
80 Zhao Z J, Yang X Q, Li S L, et al. Journal of Manufacturing Processes, 2019, 38, 396.
81 Chen G, Wu K, Wang Y, et al. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4), 1165.
82 Wang R L, Yang X Q, Tang W S, et al. Journal of Aeronautical Materials, 2024, 44(1), 152.
83 Tang W S, Yang X Q, Wang R L, et al. Materials Science and Enginee-ring A, 2023, 885, 145632.
84 Yang F, Pei S C, Luo X R, et al. Acta Metallurgica Sinica, 2025, 61(8), 1129 (in Chinese).
杨帆, 裴世超, 罗新蕊, 等. 金属学报, 2025, 61(8), 1129.
85 Cahalan L P, Williams M B, Brewer L N, et al. Applied Sciences-Basel, 2024, 14, 457.
86 Alsaleh N A, Seleman M M E, Hassan A M M, et al. Materials, 2023, 16, 4904.
87 Jiang T, Jiao T, Dai G Q, et al. Journal of Alloys and Compounds, 2022, 935, 168019.
88 Chen L, Li Y Z, Lu L K, et al. Materials Today Communications, 2024, 38, 108078.
89 Beck S C, Rutherford B A, Avery D Z, et al. Materials Science and Engineering:A, 2021, 819, 141351.
90 He C S, Li Y, Wei J X, et al. Journal of Materials Science and Technology, 2022, 108, 26.
91 Kiani S, Mirsalehi S E, Sahraei A. Welding in the World, 2024, 68(11), 2869.
92 Phillips B J, Mason C J T, Beck S C, et al. Journal of Materials Processing Technology, 2021, 295, 117169.
93 Shao M H, Wang C M, Zhang H, et al. Materials Characterization, 2022, 192, 112178.
94 Liu J, Miao Y G, Wu R Z, et al. Journal of Alloys and Compounds, 2024, 1007, 176512.
95 Zhong Y, Zhang Y P, Ramachandran C S, et al. Corrosion Science, 2024, 233, 112109.
96 Kim M, Perez-Andrade L, Brewer L N, et al. Journal of Thermal Spray Technology, 2023, 32(8), 2729.
97 Nourian A, Beamer C, Muftu S. Additive Manufacturing, 2024, 88, 104246.
98 Liu C X, Chu X R, Wang N J, et al. Journal of Alloys and Compounds, 2024, 985, 174031.
99 Judas J, Zapletal J, Adam O, et al. Materials Characterization, 2024, 216, 114259.
100 Yang X W, Meng T X, Su Y, et al. Materials Science and Engineering, 2024, 891, 146024.
101 Han X H, Yao X C, Cao J S, et al. Surface Technology, 2024, 53(5), 194 (in Chinese).
韩晓辉, 姚小春, 曹金山, 等. 表面技术, 2024, 53(5), 194.
102 Wu D, Li W Y, Yang X W, et al. Journal of Thermal Spray Technology, 2023, 32(8), 2378.
103 Hutasoit N, Javed M A, Rashid R A R, et al. International Journal of Mechanical Sciences, 2021, 204, 106526.
104 Rao Y Q, Wang Q, Oka D, et al. Surface and Coatings Technology, 2020, 383, 125271.
105 Wu D, Li W Y, Liu K, et al. Journal of Materials Science and Technology, 2022, 106, 211.
106 Liu Z H, Han P, Wang W, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(11), 3250.
107 Wang W, Han P, Wang Y H, et al. Journal of Materials Research and Technology, 2020, 9(4), 9073.
108 Wang Y H. Research on the preparation, microstructure and properties of pure aluminum additive by cold spray-friction composite additive ma-nufacturing. Master's Thesis, Xi`an University of Architecture and Technology, China, 2019 (in Chinese).
王盈辉. 冷喷摩擦复合增材制造纯铝增材体及其组织性能研究. 硕士学位论文, 西安建筑科技大学, 2019.
109 Xiang Y T, Liu Z H, Wang W, et al. Engineering Fracture Mechanics, 2024, 306, 110255.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[6] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[7] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[8] 李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
[9] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[10] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[11] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[14] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[15] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed