Research Progress in 3D Printing of Ceramic Materials by Fused Deposition Modeling
LI Chenxiao, LI Junsheng*, CHEN Yujie, YAN Manling, CHEN Yurong, WAN Fan*
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract: Ceramic materials have advantages such as high hardness, high temperature resistance, electrical insulation, and bio-compatibility, making them ideal application materials in fields like aerospace, machinery, electronics, and medicine. However, conventional preparation methods cannot meet the current needs for complex structures and customization. The fused deposition modeling (FDM) 3D printing of ceramic materials has gained increasing attention and research due to its advantages of low cost, wide applicability, and high efficiency. It is expected to fundamentally solve the problems of efficient printing and complex structure development in ceramics. In this paper, the processes of FDM, including feedstocks preparation, extrusion molding, debinding and sintering, were introduced and the research status of FDM in the field of fiber-reinforced composite ceramic materials was elaborated. The main factors affecting printing and properties were analyzed, and finally, application and deve-lopment of FDM in ceramic materials were prospected.
李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
LI Chenxiao, LI Junsheng, CHEN Yujie, YAN Manling, CHEN Yurong, WAN Fan. Research Progress in 3D Printing of Ceramic Materials by Fused Deposition Modeling. Materials Reports, 2025, 39(8): 24040242-10.
1 Pei C, Liu H, Chen M, et al. Ceramics International,DOI:10. 1016/j. ceramint. 2024. 2. 016. 2 Dönmez M, Erdoan M, Duran C. Journal of the European Ceramic Society, 2024, 44(3), 1610. 3 Zhang H, Liu H, Wu H, et al. Journal of the European Ceramic Society, 2022, 42(4), 1249. 4 Osada T, Nagai Y, Kobayashi S. Open Ceramics, 2023, 13, 100328. 5 Liang H, Yao X, Huang Z, et al. Journal of the European Ceramic Society, 2016, 36(8), 1863. 6 Filipović S, Obradović N, Fahrenholtz W G, et al. Ceramics International, DOI:10. 1016/j. ceramint. 2024. 2. 004. 7 Pchelintsev I, Karamov R, Tikhonov A, et al. Ceramics International, 2023, 49(18), 29409. 8 Chen T, Wang D, Cao Q, et al. Ceramics International, 2024, 50(1), 1732. 9 Shahzad A, Lazoglu I. Composites Part B: Engineering, 2021, 225, 109249. 10 Wang K, Yin J, Chen X, et al. Journal of Alloys and Compounds, 2024, 975, 172821. 11 Furong N, Xiaole Y, Yuanbing L, et al. Journal of the European Ceramic Society, 2022, 42(15), 7369. 12 Rajpurohit S R, Dave H K, Bodaghi M. Materials Today: Proceedings, DOI:10. 1016/j. matpr. 2023. 3. 310. 13 Sarraf F, Hadian A, Churakov S V, et al. Journal of the European Ceramic Society, 2023, 43(2), 530. 14 Rangarajan S, Qi G, Venkataraman N, et al. Journal of the American Ceramic Society, 2000, 83, 1663. 15 Esposito C, Scalera F, Gervaso F, et al. Journal of Thermal Analysis and Calorimetry, 2018, 134(1), 575. 16 Sarraf F, Abbatinali E, Gorjan L, et al. Journal of the European Ceramic Society, 2021, 41(13), 6677. 17 Khatri B, Lappe K, Habedank M, et al. Polymers, 2018, 10(6), 666. 18 Singh N, Singh R, Ahuja I P S. Materials Today Communications, 2018, 15, 124. 19 Li F F, Ma N N, Chen J, et al. Additive Manufacturing, 2022, 58, 102994. 20 Abdullah A M, Rahim T N A T, Hamad W N F W, et al. Dental Materials, 2018, 34(11), e309. 21 Zapciu A, Amza C G, Popescu D. Nonconventional Technologies Review, 2017, 21(1), 18. 22 Cé De Andrade J, Cabral F, Clemens F J, et al. Materials Today Communications, 2023, 35, 106357. 23 Kosamiya V, Wang J. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(2), 249. 24 Nötzel D, Eickhoff R, Hanemann T. Materials, 2018, 11(8), 1463. 25 Clemens F, Sarraf F, Borzì A, et al. Journal of the European Ceramic Society, 2023, 43(7), 2752. 26 Masuda H, Ohta Y, Kitayama M. Journal of Materials Science and Chemical Engineering, 2019, 7, 1. 27 Heim T, Kern F. Ceramics, 2023, 6(1), 241. 28 Park S, Fu K (Kelvin). Composites Science and Technology, 2021, 213, 108876. 29 Arnesano A, Kunjalukkal P S, Notarangelo A, et al. Ceramics International, 2020, 46(2), 2206. 30 He Q, Jiang J, Yang X, et al. Journal of the European Ceramic Society, 2021, 41(1), 1033. 31 Shen T, Xiong H, Li Z, et al. Ceramics International, 2021, 47(24), 34352. 32 Han R, Buchanan F, Ford L, et al. Materials Science and Engineering: C, 2021, 120, 111755. 33 Bellini A, Shor L, Guceri S I. Rapid Prototyping Journal, 2005, 11(4), 214. 34 Yang X L, Niu F R, Luo H Y, et al. 2023, 66(16), 69(in Chinese). 杨小乐, 牛富荣, 罗煌阳, 等. 航空制造技术, 2023, 66(16), 69. 35 He Q L. The design of 3D printer based on FDM and its application in preparation of zirconia ceramics. Master's Thesis, Changsha University of Science & Technology, China, 2020 (in Chinese). 贺庆龙. 基于FDM的3D打印机设计及其在氧化锆陶瓷制备中的应用. 硕士学位论文, 长沙理工大学, 2020. 36 Niu F R, Zhang L, Guo J Y, et al. Naihuo Cailiao, 2023, 57(1), 20 (in Chinese). 牛富荣, 张力, 郭金玉, 等. 耐火材料, 2023, 57(1), 20. 37 Wu Z P, Yang Q, Zhang H, et al. Equipment Manufacturing Technology, 2017(10), 66 (in Chinese). 邬宗鹏, 杨琦, 张卉, 等. 装备制造技术, 2017(10), 66. 38 Wu B. The Research on Fused Deposition Modeling of Ceramics. Master's Thesis, Huazhong University of Science & Technology, China, 2017 (in Chinese). 武博. 陶瓷熔融沉积成形工艺的研究. 硕士学位论文, 华中科技大学, 2017. 39 Xu C Y. Research and development of a new type of FDM granular 3D printer and its application. Master's Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese). 徐常有. 新型FDM粒料3D打印机研发及应用研究. 硕士学位论文, 北京化工大学, 2018. 40 Qian C W. Design of screw extruder for MELT deposition 3D printer and consumables preparation and performance study. Master's Thesis, Lanzhou Jiaotong University, China, 2022 (in Chinese). 钱崇伟. 熔融沉积3D打印机螺杆式挤出装置的设计及耗材制备与性能研究. 硕士学位论文, 兰州交通大学, 2022. 41 Marchewka J, Laska J. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12), 4933. 42 Xiao J. Research on fused deposition modeling simulation and welding property for PVDF. Master's Thesis, Donghua University, China, 2022 (in Chinese). 肖洁. 基于PVDF的FDM成型模拟及其粘结性能研究. 硕士学位论文, 东华大学, 2022. 43 Hu X F, Niu F R, Zhou Z, et al. Cemented Carbide, 2021, 38(3), 201 (in Chinese). 胡祥芬, 牛富荣, 周哲, 等. 硬质合金, 2021, 38(3), 201. 44 Zhu J W, Pan W, Huang S Z, et al. China Plastics, 2023, 37(8), 118 (in Chinese). 朱家威, 潘威, 黄士争, 等. 中国塑料, 2023, 37(8), 118. 45 Grida I, Evans J R G. Journal of the European Ceramic Society, 2003, 23(5), 629. 46 Smirnov A, Nikitin N, Peretyagin P, et al. Journal of Composites Science, 2023, 7(9), 381. 47 Ranjan N, Singh R, Ahuja I. Materials Today: Proceedings, 2019, 18, 2329. 48 Liu Z, Lei Q, Xing S. Journal of Materials Research and Technology, 2019, 8(5), 3741. 49 Zhang B, Wang L, Song P, et al. Materials & Design, 2021, 201, 109490. 50 Francis V, Jain P K. IOP Conference Series: Materials Science and Engineering, 2018, 383, 012010. 51 Agarwala M, Jamalabad, V, Langrana N A. Rapid Prototyping Journal, 1996, 2(4), 4. 52 Petit C, Meunier C, Manceaux L, et al. Open Ceramics, 2023, 15, 100378. 53 Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, et al. Materials & Design, 2020, 188, 108414. 54 Conzelmann N A, Gorjan L, Sarraf F, et al. Rapid Prototyping Journal, 2020, 26(6), 1035. 55 Kremzer M, Tomiczek B, Matula G, et al. Materials, 2023, 16(15), 5473. 56 Sarraf F, Hadian A, Churakov S V, et al. Journal of the European Ceramic Society, 2023, 43(2), 530. 57 Liu K, Sui H J, Wang J, et al. Advanced Ceramics, 2017, 38(4), 286 (in Chinese). 刘凯, 孙华君, 王江, 等. 现代技术陶瓷, 2017, 38(4), 286. 58 Mei H, Yan Y, Feng L, et al. Journal of the American Ceramic Society, 2019, 102(6), 3244. 59 Yan Y, Mei H, Zhang M, et al. Composites Part A: Applied Science and Manufacturing, 2022, 162, 107127. 60 Wang F, Li L, Song T, et al. Advanced Ceramics, 2023, 44(101), 461 (in Chinese). 王飞, 李伶, 宋涛, 等. 现代技术陶瓷, 2023, 44(101), 461. 61 Wang Z, Yu N, Li J, et al. Materials Reports, 2021, 35, 15197 (in Chinese). 王智, 于宁, 黎静. 材料导报, 2021, 35, 15197. 62 Freudenberg W, Wich F, Langhof N, et al. Journal of the European Ceramic Society, 2022, 42(4), 182. 63 Ning F, Cong W, Qiu J, et al. Composites Part B: Engineering, 2015, 80, 369. 64 Maqsood N, Rimašauskas M. Results in Engineering, 2021, 11, 100246. 65 Cheng Y, Zhang Y, Zhang F, et al. Journal of the European Ceramic Society, 2024, 44(2), 721. 66 Heidari-Rarani M, Rafiee-Afarani M, Zahedi A M. Composites Part B: Engineering, 2019, 175, 107147. 67 Chacón J M, Caminero M A, Núñez P J, et al. Composites Science and Technology, 2019, 181, 107688. 68 Huang Y, Tian X, Wu L, et al. Composites Part B: Engineering, 2023, 255, 110602. 69 Sida D, Sida V. MM Science Journal, 2019, 2019(01), 2757. 70 Guo W, Liu C, Bu W, et al. Ceramics International, 2023, 49(15), 25886. 71 Gao Y, Moshayedi A J, Sanatizadeh E, et al. Ceramics International, 2023, 49(10), 16053. 72 Kim H, Johnson J, Chavez L A, et al. Ceramics International, 2018, 44(8), 9037. 73 Kim H, Torres F, Villagran D, et al. Macromolecular Materials and Engineering, 2017, 302(11), 1700229. 74 Castro J, Rojas-Nastrucci E A, Ross A, et al. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6), 2073. 75 Gao S Y. Experimental Investigation on mechanical property of ZrO2 honeycomb sandwich structures prepared. Master's Thesis, Shanghai Institute of Technology, China, 2021 (in Chinese). 高淑悦. 基于3D打印氧化锆陶瓷的夹层结构力学性能研究. 硕士学位论文, 上海应用技术大学, 2021. 76 Li J P. Microstructure and properties of Si-B-N ceramics and ceramic matrix composites. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese). 李建平. Si-B-N系透波陶瓷及其复合材料的微结构与性能. 博士学位论文, 西北工业大学, 2018. 77 Wang D C, Li H C, Tang M J, et al. Journal of Microwaves, 2023, 39(201), 358 (in Chinese). 汪东晨, 李浩晨, 汤梦娇, 等. 微波学报, 2023, 39(201), 358.