Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040242-10    https://doi.org/10.11896/cldb.24040242
  无机非金属及其复合材料 |
陶瓷材料熔融沉积3D打印研究进展
李晨晓, 李俊生*, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆*
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Research Progress in 3D Printing of Ceramic Materials by Fused Deposition Modeling
LI Chenxiao, LI Junsheng*, CHEN Yujie, YAN Manling, CHEN Yurong, WAN Fan*
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 38722KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷材料具有高硬度、耐高温、电绝缘和生物相容性等优点,是航天、机械、电子和医学等领域的理想应用材料,但传统陶瓷制备方法无法满足当下对复杂结构以及定制化的需求。熔融沉积(FDM)陶瓷3D打印技术因具有成本低、适用范围广、效率高等优点,受重视程度和研究广度日益增加。这有望解决陶瓷高效打印及复杂结构研制困难问题。本文介绍了FDM打印陶瓷材料的工艺过程,包括原料制备、挤出成型和脱脂烧结,并阐述了其在纤维增强复合陶瓷材料领域的研究现状,分析了影响打印效果与陶瓷性能的主要因素,最后对陶瓷材料FDM的应用与发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晨晓
李俊生
陈雨洁
颜曼玲
陈玉蓉
万帆
关键词:  增材制造  熔融沉积  3D打印  陶瓷材料    
Abstract: Ceramic materials have advantages such as high hardness, high temperature resistance, electrical insulation, and bio-compatibility, making them ideal application materials in fields like aerospace, machinery, electronics, and medicine. However, conventional preparation methods cannot meet the current needs for complex structures and customization. The fused deposition modeling (FDM) 3D printing of ceramic materials has gained increasing attention and research due to its advantages of low cost, wide applicability, and high efficiency. It is expected to fundamentally solve the problems of efficient printing and complex structure development in ceramics. In this paper, the processes of FDM, including feedstocks preparation, extrusion molding, debinding and sintering, were introduced and the research status of FDM in the field of fiber-reinforced composite ceramic materials was elaborated. The main factors affecting printing and properties were analyzed, and finally, application and deve-lopment of FDM in ceramic materials were prospected.
Key words:  additive manufacturing    fused deposition modeling    3D printing    ceramic material
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB321  
基金资助: 国家自然科学基金(52202123);湖南省自然科学基金(2023JJ40671)
通讯作者:  李俊生,国防科技大学新型陶瓷纤维及其复合材料重点实验室副研究员。主要研究领域为高温透波材料。lijunsheng07@nudt.edu.cn;
万帆,国防科技大学新型陶瓷纤维及其复合材料重点实验室讲师,结构功能一体化复合材料研究室副主任。牛津大学联合培养博士。主要研究领域为高性能陶瓷基复合材料先进制造及性能表征。wanfan12@nudt.edu.cn   
作者简介:  李晨晓,2018年6月于中山大学获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,在李俊生副研究员和万帆讲师的指导下进行研究。目前主要研究领域为透波陶瓷材料。
引用本文:    
李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
LI Chenxiao, LI Junsheng, CHEN Yujie, YAN Manling, CHEN Yurong, WAN Fan. Research Progress in 3D Printing of Ceramic Materials by Fused Deposition Modeling. Materials Reports, 2025, 39(8): 24040242-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040242  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040242
1 Pei C, Liu H, Chen M, et al. Ceramics International,DOI:10. 1016/j. ceramint. 2024. 2. 016.
2 Dönmez M, Erdoan M, Duran C. Journal of the European Ceramic Society, 2024, 44(3), 1610.
3 Zhang H, Liu H, Wu H, et al. Journal of the European Ceramic Society, 2022, 42(4), 1249.
4 Osada T, Nagai Y, Kobayashi S. Open Ceramics, 2023, 13, 100328.
5 Liang H, Yao X, Huang Z, et al. Journal of the European Ceramic Society, 2016, 36(8), 1863.
6 Filipović S, Obradović N, Fahrenholtz W G, et al. Ceramics International, DOI:10. 1016/j. ceramint. 2024. 2. 004.
7 Pchelintsev I, Karamov R, Tikhonov A, et al. Ceramics International, 2023, 49(18), 29409.
8 Chen T, Wang D, Cao Q, et al. Ceramics International, 2024, 50(1), 1732.
9 Shahzad A, Lazoglu I. Composites Part B: Engineering, 2021, 225, 109249.
10 Wang K, Yin J, Chen X, et al. Journal of Alloys and Compounds, 2024, 975, 172821.
11 Furong N, Xiaole Y, Yuanbing L, et al. Journal of the European Ceramic Society, 2022, 42(15), 7369.
12 Rajpurohit S R, Dave H K, Bodaghi M. Materials Today: Proceedings, DOI:10. 1016/j. matpr. 2023. 3. 310.
13 Sarraf F, Hadian A, Churakov S V, et al. Journal of the European Ceramic Society, 2023, 43(2), 530.
14 Rangarajan S, Qi G, Venkataraman N, et al. Journal of the American Ceramic Society, 2000, 83, 1663.
15 Esposito C, Scalera F, Gervaso F, et al. Journal of Thermal Analysis and Calorimetry, 2018, 134(1), 575.
16 Sarraf F, Abbatinali E, Gorjan L, et al. Journal of the European Ceramic Society, 2021, 41(13), 6677.
17 Khatri B, Lappe K, Habedank M, et al. Polymers, 2018, 10(6), 666.
18 Singh N, Singh R, Ahuja I P S. Materials Today Communications, 2018, 15, 124.
19 Li F F, Ma N N, Chen J, et al. Additive Manufacturing, 2022, 58, 102994.
20 Abdullah A M, Rahim T N A T, Hamad W N F W, et al. Dental Materials, 2018, 34(11), e309.
21 Zapciu A, Amza C G, Popescu D. Nonconventional Technologies Review, 2017, 21(1), 18.
22 Cé De Andrade J, Cabral F, Clemens F J, et al. Materials Today Communications, 2023, 35, 106357.
23 Kosamiya V, Wang J. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(2), 249.
24 Nötzel D, Eickhoff R, Hanemann T. Materials, 2018, 11(8), 1463.
25 Clemens F, Sarraf F, Borzì A, et al. Journal of the European Ceramic Society, 2023, 43(7), 2752.
26 Masuda H, Ohta Y, Kitayama M. Journal of Materials Science and Chemical Engineering, 2019, 7, 1.
27 Heim T, Kern F. Ceramics, 2023, 6(1), 241.
28 Park S, Fu K (Kelvin). Composites Science and Technology, 2021, 213, 108876.
29 Arnesano A, Kunjalukkal P S, Notarangelo A, et al. Ceramics International, 2020, 46(2), 2206.
30 He Q, Jiang J, Yang X, et al. Journal of the European Ceramic Society, 2021, 41(1), 1033.
31 Shen T, Xiong H, Li Z, et al. Ceramics International, 2021, 47(24), 34352.
32 Han R, Buchanan F, Ford L, et al. Materials Science and Engineering: C, 2021, 120, 111755.
33 Bellini A, Shor L, Guceri S I. Rapid Prototyping Journal, 2005, 11(4), 214.
34 Yang X L, Niu F R, Luo H Y, et al. 2023, 66(16), 69(in Chinese).
杨小乐, 牛富荣, 罗煌阳, 等. 航空制造技术, 2023, 66(16), 69.
35 He Q L. The design of 3D printer based on FDM and its application in preparation of zirconia ceramics. Master's Thesis, Changsha University of Science & Technology, China, 2020 (in Chinese).
贺庆龙. 基于FDM的3D打印机设计及其在氧化锆陶瓷制备中的应用. 硕士学位论文, 长沙理工大学, 2020.
36 Niu F R, Zhang L, Guo J Y, et al. Naihuo Cailiao, 2023, 57(1), 20 (in Chinese).
牛富荣, 张力, 郭金玉, 等. 耐火材料, 2023, 57(1), 20.
37 Wu Z P, Yang Q, Zhang H, et al. Equipment Manufacturing Technology, 2017(10), 66 (in Chinese).
邬宗鹏, 杨琦, 张卉, 等. 装备制造技术, 2017(10), 66.
38 Wu B. The Research on Fused Deposition Modeling of Ceramics. Master's Thesis, Huazhong University of Science & Technology, China, 2017 (in Chinese).
武博. 陶瓷熔融沉积成形工艺的研究. 硕士学位论文, 华中科技大学, 2017.
39 Xu C Y. Research and development of a new type of FDM granular 3D printer and its application. Master's Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese).
徐常有. 新型FDM粒料3D打印机研发及应用研究. 硕士学位论文, 北京化工大学, 2018.
40 Qian C W. Design of screw extruder for MELT deposition 3D printer and consumables preparation and performance study. Master's Thesis, Lanzhou Jiaotong University, China, 2022 (in Chinese).
钱崇伟. 熔融沉积3D打印机螺杆式挤出装置的设计及耗材制备与性能研究. 硕士学位论文, 兰州交通大学, 2022.
41 Marchewka J, Laska J. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12), 4933.
42 Xiao J. Research on fused deposition modeling simulation and welding property for PVDF. Master's Thesis, Donghua University, China, 2022 (in Chinese).
肖洁. 基于PVDF的FDM成型模拟及其粘结性能研究. 硕士学位论文, 东华大学, 2022.
43 Hu X F, Niu F R, Zhou Z, et al. Cemented Carbide, 2021, 38(3), 201 (in Chinese).
胡祥芬, 牛富荣, 周哲, 等. 硬质合金, 2021, 38(3), 201.
44 Zhu J W, Pan W, Huang S Z, et al. China Plastics, 2023, 37(8), 118 (in Chinese).
朱家威, 潘威, 黄士争, 等. 中国塑料, 2023, 37(8), 118.
45 Grida I, Evans J R G. Journal of the European Ceramic Society, 2003, 23(5), 629.
46 Smirnov A, Nikitin N, Peretyagin P, et al. Journal of Composites Science, 2023, 7(9), 381.
47 Ranjan N, Singh R, Ahuja I. Materials Today: Proceedings, 2019, 18, 2329.
48 Liu Z, Lei Q, Xing S. Journal of Materials Research and Technology, 2019, 8(5), 3741.
49 Zhang B, Wang L, Song P, et al. Materials & Design, 2021, 201, 109490.
50 Francis V, Jain P K. IOP Conference Series: Materials Science and Engineering, 2018, 383, 012010.
51 Agarwala M, Jamalabad, V, Langrana N A. Rapid Prototyping Journal, 1996, 2(4), 4.
52 Petit C, Meunier C, Manceaux L, et al. Open Ceramics, 2023, 15, 100378.
53 Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, et al. Materials & Design, 2020, 188, 108414.
54 Conzelmann N A, Gorjan L, Sarraf F, et al. Rapid Prototyping Journal, 2020, 26(6), 1035.
55 Kremzer M, Tomiczek B, Matula G, et al. Materials, 2023, 16(15), 5473.
56 Sarraf F, Hadian A, Churakov S V, et al. Journal of the European Ceramic Society, 2023, 43(2), 530.
57 Liu K, Sui H J, Wang J, et al. Advanced Ceramics, 2017, 38(4), 286 (in Chinese).
刘凯, 孙华君, 王江, 等. 现代技术陶瓷, 2017, 38(4), 286.
58 Mei H, Yan Y, Feng L, et al. Journal of the American Ceramic Society, 2019, 102(6), 3244.
59 Yan Y, Mei H, Zhang M, et al. Composites Part A: Applied Science and Manufacturing, 2022, 162, 107127.
60 Wang F, Li L, Song T, et al. Advanced Ceramics, 2023, 44(101), 461 (in Chinese).
王飞, 李伶, 宋涛, 等. 现代技术陶瓷, 2023, 44(101), 461.
61 Wang Z, Yu N, Li J, et al. Materials Reports, 2021, 35, 15197 (in Chinese).
王智, 于宁, 黎静. 材料导报, 2021, 35, 15197.
62 Freudenberg W, Wich F, Langhof N, et al. Journal of the European Ceramic Society, 2022, 42(4), 182.
63 Ning F, Cong W, Qiu J, et al. Composites Part B: Engineering, 2015, 80, 369.
64 Maqsood N, Rimašauskas M. Results in Engineering, 2021, 11, 100246.
65 Cheng Y, Zhang Y, Zhang F, et al. Journal of the European Ceramic Society, 2024, 44(2), 721.
66 Heidari-Rarani M, Rafiee-Afarani M, Zahedi A M. Composites Part B: Engineering, 2019, 175, 107147.
67 Chacón J M, Caminero M A, Núñez P J, et al. Composites Science and Technology, 2019, 181, 107688.
68 Huang Y, Tian X, Wu L, et al. Composites Part B: Engineering, 2023, 255, 110602.
69 Sida D, Sida V. MM Science Journal, 2019, 2019(01), 2757.
70 Guo W, Liu C, Bu W, et al. Ceramics International, 2023, 49(15), 25886.
71 Gao Y, Moshayedi A J, Sanatizadeh E, et al. Ceramics International, 2023, 49(10), 16053.
72 Kim H, Johnson J, Chavez L A, et al. Ceramics International, 2018, 44(8), 9037.
73 Kim H, Torres F, Villagran D, et al. Macromolecular Materials and Engineering, 2017, 302(11), 1700229.
74 Castro J, Rojas-Nastrucci E A, Ross A, et al. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6), 2073.
75 Gao S Y. Experimental Investigation on mechanical property of ZrO2 honeycomb sandwich structures prepared. Master's Thesis, Shanghai Institute of Technology, China, 2021 (in Chinese).
高淑悦. 基于3D打印氧化锆陶瓷的夹层结构力学性能研究. 硕士学位论文, 上海应用技术大学, 2021.
76 Li J P. Microstructure and properties of Si-B-N ceramics and ceramic matrix composites. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese).
李建平. Si-B-N系透波陶瓷及其复合材料的微结构与性能. 博士学位论文, 西北工业大学, 2018.
77 Wang D C, Li H C, Tang M J, et al. Journal of Microwaves, 2023, 39(201), 358 (in Chinese).
汪东晨, 李浩晨, 汤梦娇, 等. 微波学报, 2023, 39(201), 358.
[1] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[2] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[3] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[8] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[9] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[10] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[13] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[14] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[15] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed