Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 20100246-9    https://doi.org/10.11896/cldb.20100246
  无机非金属及其复合材料 |
氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展
李想1, 张军2,*
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 河南科技大学化工与制药学院,河南 洛阳 471023
Research Progress of Shape-controlled Synthesis of Catalysts and Domain Limited Supports for Ammonia Borane Dehydrogenation
LI Xiang1, ZHANG Jun2,*
1 School of Material Science and Engineering, Henan University of Science & Technology, Luoyang 471023, Henan, China
2 Chemical Engineering & Pharmaceutics School, Henan University of Science & Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 5105KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氨硼烷具有高储氢含量(19.6%,质量分数),在普通贮存条件下稳定,被认为是最具有潜力的储氢材料之一。氨硼烷在常温下不易放氢,金属催化剂可显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,然而金属催化剂纳米颗粒易氧化、易团聚,使用载体可使催化剂金属纳米颗粒分散于载体表面或孔道内部,防止氧化和团聚。催化剂及其载体的整体形貌很大程度决定了催化剂的比表面积、催化剂活性颗粒分布状态,从而影响了反应活性位点的数量及分布状态,对氨硼烷水解催化活性和催化剂的使用寿命具有重要影响,因此本文对氨硼烷水解催化剂及其限域载体的整体形貌按空间维度进行分类归纳,并对其可控合成方法和其对氨硼烷水解催化效果进行综述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李想
张军
关键词:  氨硼烷水解  催化剂  形貌  载体    
Abstract: Ammonia borane (AB) has been considered as one of the most promising hydrogen storage materials due to its high hydrogen-storage content (19.6wt%) and stability under ordinary storage conditions. Catalyst is the core technology which can significantly increase the rate of dehydroge-nation of AB as ammonia borane is not easy to release hydrogen at room temperature without catalysts. However, metal catalyst particles are generally easy to be oxidized and agglomerate. In order to overcome this problem, a variety of supports have been chosen to disperse the catalyst on their surface or in their poresto suppress the agglomeration and oxidation. The overall morphology of the catalysts and their support greatly determines the specific surface area of the catalyst and distribution of catalyst active particles, thereby affecting the number and distribution of reactive sites, and has a significant impact on the catalytic activity and the service life of the catalyst. Therefore, this article has classified the overall morphology of catalyst and their support for hydrogen generation of ammonia borane and their support according to spatial dimensions, and haavesummarized their controllable synthesis methods and their catalytic effects on hydrogen generation of ammonia borane.
Key words:  ammonia borane dehydrogenation    catalyst    morphology    support
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  O643  
基金资助: 河南省教育厅高等学校重点科研项目(21A150018)
通讯作者:  * j-zhang@126.com   
作者简介:  李想,2012年毕业于中南大学材料科学与工程专业,2012至2017年于中国科学院成都有机化学研究所进行硕博连读,并于2017年取得应用化学博士学位,现为河南科技大学讲师,主要从事锂离子电池正极材料的制备及改性。2019年至今在河南科技大学任教,主要研究方向为氨硼烷水解释氢催化剂的制备及改性研究。迄今发表锂离子电池高镍正极材料相关学术论文10余篇、储氢材料及其催化剂相关学术论文5篇。
张军,1984年于河南师范大学取得化学学士学位,1987年于中科院盐湖所取得无机化学硕士学位,2004年于兰州大学取得无机化学博士学位,2006年赴日本横滨国立大学做访问学者。现为河南科技大学教授、博士研究生导师。主要研究方向为氨硼烷水解释氢催化剂的合成与催化机理研究、氨硼烷的电化学法制备等。迄今发表储氢材料及其催化剂相关学术论文10余篇。
引用本文:    
李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 36(22): 20100246-9.
LI Xiang, ZHANG Jun. Research Progress of Shape-controlled Synthesis of Catalysts and Domain Limited Supports for Ammonia Borane Dehydrogenation. Materials Reports, 2022, 36(22): 20100246-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100246  或          http://www.mater-rep.com/CN/Y2022/V36/I22/20100246
1 Shore S G, Parry R W. Journal of the American Chemical Society, 1955, 77, 6084.
2 Xu W Q, Li Q Q, Huang M J. International Journal of Hydrogen Energy, 2015, 40, 16578.
3 Zou S S, Tao Z L, Chen J. Acta Chimica Sinica, 2011, 69(18), 2117(in Chinese).
邹少爽,陶占良,陈 军,化学学报,2011,69(18),2117.
4 Murty B S, Shankar P, Raj B, et al. Textbook of Nanoscience and Nanotechnology, Universities Press, India, 2014.
5 Alpaydın C Y, Gülbay S K, Colpan C O.International Journal of Hydrogen Energy, 2020, 45, 3414.
6 Gong L H, Ye C, An M Z. Chinese Journal of Applied Chemistry, 2011, 28(2), 164(in Chinese).
宫丽红, 叶 彩, 安茂忠,应用化学, 2011, 28(2),164.
7 Davis B L, Dixon D A, Garner E B, et al.Angewandte Chemie International, 2009, 48, 6812.
8 Filiz B C, Figen A K. International Journal of Hydrogen Energy, 2016, 41, 15433.
9 Barakat N A M.Applied Catalysis A-General, 2013, 451, 21.
10 Barakat N A M.Materials Letters, 2013, 106, 229.
11 Tong Y, Lu X F, Sun W N, et al.Journal of Power Sources, 2014, 261, 221.
12 Korkut S E, Küçükkeçeci H, Metin O.ACS Applied Material & Interfaces, 2020, 12, 8130.
13 Xu P, Lu W, Zhang J, et al.ACS Sustainable Chemistry & Engineering, 2020, 8, 12366.
14 Akbayrak S, Özkar S.Dalton Transactions, 2014, 43, 1797.
15 Akbayrak S, Tanyıldızı S, Morkan I, et al.International Journal of Hydrogen Energy, 2014, 39, 9628.
16 Deka J R, Saikia D, Hsia K S, et al.Catalysts, 2020, 10, 1.
17 Yousef A, El-Halwany M M, Barakat N A M, et al.Ceramics Internatio-nal, 2015, 41, 6137.
18 Yousef A, Barakat N A M, Kim H Y.Applied Catalysis A-General, 2013, 467, 98.
19 Al-Enizi A M, Brooks R M, Ahmad M M, et al.Journal of Nanoscience and Nanotechnology, 2018, 18, 4714.
20 Wang C, Sun D, Yu X, et al.Inorganic Chemistry Frontiers, 2018, 5, 2038.
21 Wang C, Yu X, Zhang X, et al.Journal of Alloys and Compounds, 2020, 815, 152431.
22 Hu M, Wang H, Wang Y, et al.International Journal of Hydrogen Energy, 2017, 42, 24142.
23 Ma Y, Li X, Zhang Y, et al.Journal of Alloys and Compounds, 2017, 708, 270.
24 Fang Y B, Yan X H, Sun J Q.Chemial Industry and Engineering Progress, 2004, 23(12), 1296(in Chinese).
房永彬,严新焕,孙军庆. 化工进展,2004, 23(12), 1296.
25 Zhang J K, Chen C Q, Chen S, et al.Catalysis Science & Technology, 2016, 7, 322.
26 Wang Q T, Zhang Z, Liu J, et al.Materials Chemistry and Physics, 2018, 204, 58.
27 Arthur E E, Li F, Momade F W Y, et al.Energy, 2014, 76, 822.
28 Wu Z, Duan Y, Ge S, et al.Catalysis Communications, 2017, 91, 10.
29 Yang C, Gao F Y, Tang X L, et al. Materials Reports A:Review Papers, 2020, 34(7), 13005(in Chinese).
杨晨, 高凤雨, 唐晓龙, 等. 材料导报:综述篇,2020,34(7),13005.
30 Tang Z, Chen H, Chen X, et al.Journal of the American Chemical Society, 2012, 134, 5464.
31 Sun W, Lu X, Tong Y, et al.International Journal of Hydrogen Energy, 2014, 39, 9080.
32 Feng K, Zhong J, Zhao B H, et al.Angewandte Chemie International, 2016, 55, 11950.
33 Qiu F, Li L, Liu G, et al.International Journal of Hydrogen Energy, 2013, 38, 7291.
34 Cao N, Luo W, Cheng G.International Journal of Hydrogen Energy, 2013, 38, 11964.
35 Çiftci N S, Metin Ö.International Journal of Hydrogen Energy, 2014, 39, 18863.
36 Yu C, Guo X F, Shen M Q, et al.Angewandte Chemie International, 2018, 57, 451.
37 Zheng W, Sun Z M, Zhang P G, et al. Materials Reports, 2017, 31(9),1(in Chinese).
郑伟, 孙正明, 张培根, 等. 材料导报,2017, 31(9), 1.
38 Guo Z W, Liu T, Wang Q T, et al.RSC Advances, 2018, 8, 843.
39 Cheng S H, Liu Y C, Zhao Y N, et al. Dalton Transactions, 2019, 48, 17499.
40 Wu Y W, Wu X, Liu Q W, et al.International Journal of Hydrogen Energy, 2017, 42, 16003.
41 Liu Q B, Zhang S J, Liao J Y, et al.Catalysis Science & Technology, 2017, 7, 3573.
42 Zhang L X.Application technology of core-shell structure micro-nanomate-rials, National Defense Industry Press, 2010, pp.1(in Chinese).
张立新. 核壳结构微纳米材料应用技术(第一版), 国防工业出版社,2010, pp.1.
43 Yan J M, Zhang X B, Akita T. Journal of the American Chemical SocietyCommunications, 2010, 132, 5326.
44 Yang L, Su J, Meng X Y, et al. Journal of Materials Chemistry A, 2013, 1, 10016.
45 Cao N, Su J, Luo W, et al.Catalysis Communications, 2014, 43, 27.
46 Qiu F Y, Liu G, Li L, et al. Chemistry, 2014, 20, 505.
47 Qiu F Y, Dai Y L, Li L, et al. International Journal of Hydrogen Energy, 2014, 39, 436.
48 Xu P, Lu W W, Zhang J J, et al.ACS Sustainable Chemistry & Enginee-ring, 2020, 8, 12366.
49 Yao Q L, Lu Z H, Zhang Z J, et al.Scientific Reports, 2014, 4, 7597.
50 Xu D, Wang W D, Tian M, et al.Journal of Colloid and Interface Science, 2018, 516, 407.
51 Cheng F Y, Ma H, Li Y M. Chen J.Inorganic Chemistry, 2007, 46, 788.
52 Umegaki T, Takei C, Xu Q, et al. International Journal of Hydrogen Energy, 2013, 38, 1397.
53 Toyama N, Umegake T, Kojima Y.International Journal of Hydrogen Energy, 2014, 39, 17136.
54 Umegaki T, Watanabe K, Ogawa H, et al.International Journal of Hydrogen Energy, 2020, 45, 19531.
55 Zhang J, Dong Y N, Liu Q X, et al.International Journal of Hydrogen Energy, 2019, 44, 30226.
56 Yang L, Cao N, Du C, et al.Materials Letters, 2014, 115, 113.
57 Yang Y, Lu Z H, Hu Y, et al.RSC Advances, 2014, 4, 13749.
58 Güngörmez K, Metin Ö.Applied Catalysis A-General, 2015, 494, 22.
59 Du X, Yang C, Zeng X, et al.International Journal of Hydrogen Energy, 2017, 42, 14181.
60 Kalidindi S B, Sanyal U, Jagirdar B R.Physical Chemistry Chemical Physics, 2008, 10, 5870.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[3] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[4] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[5] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[6] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[7] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[8] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[9] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[10] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[11] 陈亚军, 韦第升, 彭剑书, 宋先捷. 基于蚀坑形貌特征的2198-T8铝锂合金预腐蚀疲劳寿命预测[J]. 材料导报, 2022, 36(21): 21080028-7.
[12] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[13] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[14] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[15] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed