Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1435-1441    https://doi.org/10.11896/j.issn.1005-023X.2018.09.007
  材料综述 |
绿色电化学法合成金属有机骨架材料的研究现状
魏金枝,王雪亮,孙晓君,张凤鸣
哈尔滨理工大学化学与环境工程学院,哈尔滨 150080
A Methodological Review on Green Electrochemical Synthesis of Metal-Organic Framework Materials
WEI Jinzhi, WANG Xueliang, SUN Xiaojun, ZHANG Fengming
College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150080
下载:  全 文 ( PDF ) ( 3677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架(Metal-organic frameworks,MOFs)材料是一种由金属离子和有机配体通过配位键组装的无机-有机杂化配合物,在气体分离与储存、吸附、催化、载药以及荧光检测等方面都有广泛应用。在诸多合成MOFs材料的方法中,绿色电化学合成法因能耗低、反应条件温和以及反应时间短等特点而成为研究的热点,但目前该方法仍有许多关键问题亟待解决。本文总结了绿色电化学合成MOFs材料近10年的研究进展,综述了包括阳极合成、阴极合成、间接合成、电镀置换等在内的多种合成方法,并展望了未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏金枝
王雪亮
孙晓君
张凤鸣
关键词:  金属有机骨架(MOFs)  电化学  阳极合成  阴极合成  间接合成  电镀置换法    
Abstract: Metal-organic frameworks (MOFs) are a kind of inorganic-organic hybrid complexes assembled by the coordinate bonding of metal ions and organic ligands, and have found wide application in gas separation and storage, adsorption, catalysis, drug delivery and fluorescence detection, etc. Amongst the rich variety of methods to synthesize MOFs, the green electrochemical synthesis has become a hot topic owing to its low energy consumption, mild reaction condition and short reaction time, nevertheless it still faces some key issues. This paper renders a retrospection over the research upon green electrochemical synthesis of MOFs during the past decade, along with a summary of the relevant prevailing methods, including anodic synthesis, cathodic synthesis, indirect synthesis and galvanic displacement. It also contains a prospective outlook for the future research.
Key words:  metal-organic frameworks (MOFs)    electrochemistry    anodic synthesis    cathodic synthesis    indirect synthesis    galvanic displacement
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O782+.9  
基金资助: 国家自然科学基金(21676066);黑龙江省自然科学基金面上项目(E2016042)
作者简介:  魏金枝:女,博士,副教授,主要从事MOFs材料的电化学制备及其应用和废水的高级氧化法及材料特性的研究 E-mail:weijz0451@163.com
引用本文:    
魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
WEI Jinzhi, WANG Xueliang, SUN Xiaojun, ZHANG Fengming. A Methodological Review on Green Electrochemical Synthesis of Metal-Organic Framework Materials. Materials Reports, 2018, 32(9): 1435-1441.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.007  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1435
1 Férey G. Hybrid porous solids: Past, present, future[J].Chemical Society Reviews,2008,37(1):191.
2 Li H, Eddaoudi M, T L G, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate)[J].Journal of the American Chemical Society,1998,120(33):8571.
3 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J].Chemical Reviews,2012,112(2):724.
4 Bae Y S, Snurr R Q. Development and evaluation of porous mate-rials for carbon dioxide separation and capture[J].Angewandte Chemie International Edition,2011,50(49):11586.
5 Assche T R C V, Duerinck T, Sevillano J J G, et al. High adsorption capacities and two-step adsorption of polar adsorbates on copper-benzene-1,3,5-tricarboxylate metal-organic framework[J].Journal of Physical Chemistry C,2013,117(117):18100.
6 Sachse A, Ameloot R, Coq B, et al. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis[J].Chemical Communications,2012,48(39):4749.
7 Murray L J, Dinc M, Long J R. Hydrogen storage in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1294.
8 Lv F, Xu L, Zhang Y, et al. Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers[J].Applied Materials & Interfaces,2015,7(34):19104.
9 Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks[J].Journal of the American Chemical Society,1990,112(4):1199.
10 Kitagawa S, Matsuyama S, Munakata M, et al. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X∞][M=CuI, X=PF6 ; M=AgI, X=ClO-4; bpen=trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)∞][J].Journal of the Chemical Society Dalton Transactions,1991,11(11):2869.
11 Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401.
12 Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J].Nature,1995, 374(6525):792.
13 Riou D, Férey G. Hybrid open frameworks (MILn). Part 3 crystal structures of the HT and LT forms of MIL7: A new vanadium propylenediphosphonate with an open-framework. Influence of the synthesis temperature on the oxidation state of vanadium within the same structural type[J].Journal of Materials Chemistry,1998,8(12):2733.
14 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J].Chemical Reviews,2017,112(2):673.
15 Ying Lulu. “Leaves” car into the Expo[J].Today Technology,2010(8):53(in Chinese).
应璐珺.“叶子”汽车驶入世博[J].今日科技,2010(8):53.
16 Sadeghi H. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J].Journal of the American Chemical Society,2005,127(40):13744.
17 Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J].Journal of the American Chemical Society,2009,131(44):16000.
18 Pichon A, Lazuengaray A, James S L. Solvent-free synthesis of a microporous metal-organic framework[J].Crystengcomm,2008,8(3):211.
19 Son W J. Sonochemical synthesis of MOF-5[J].Chemical Communications,2009,47(47):6336.
20 Yoo Y, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition[J].Chemical Communications,2008,21:2441.
21 Li W J, Lu J, Gao S Y, et al. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives[J].Journal of Materials Chemistry A,2014,2(45):19473.
22 Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J].Journal of the American Chemical Society,2011,129(49):15120.
23 Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444.
24 Ameloot R, Pandey L, Van d A M, et al. Patterned film growth of metal-organic frameworks based on galvanic displacement[J].Chemical Communications,2010,46(21):3735.
25 Mueller U, Puetter H, Hesse M, et al. Electrochemical preparation of crystalline, porous, organometallic framework materials, useful e.g. for storage of gases, such as methane for use in fuel cells, with generation of metal ions from an anode in the preparation medium: US, WO20050498922A1[P].2005.
26 Biemmi E, Christian S, Stock N, et al. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1[J].Microporous & Mesoporous Materials,2009,117(117):111.
27 Campagnol N, Assche T R C V, Stappers L, et al. On the electrochemical deposition of metal-organic frameworks[J].Journal of Materials Chemistry A,2016,4(10):3914.
28 Sachdeva S, Pustovarenko A, Sudhlter E J, et al. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis[J].Crystengcomm,2016,18(22):4018.
29 Buchan I, Ryder M R, Tan J C. Micromechanical behavior of polycrystalline metal-organic framework thin films synthesized by electrochemical reaction[J].Crystal Growth & Design,2015,15(4):1991.
30 Joaristi A M, Juanalcaiz J, Serracrespo P, et al. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks[J].Crystal Growth & Design,2012,12(7):3489.
31 Assche T R C V, Desmet G, Ameloot R, et al. Electrochemical synthesis of thin HKUST-1 layers on copper mesh[J].Microporous & Mesoporous Materials,2012,158(8):209.
32 Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina[J].Microporous & Mesoporous Materials,2008,113(1):132.
33 Schfer P, Ma V D V, Domke K F. Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis[J].Chemical Communications,2016,52(25):4722.
34 Ameloot R, Stappers L, Fransaer J, et al. Patterned growth of me-tal-organic framework coatings by electrochemical synthesis[J].Chemistry of Materials,2009,21(13):2580.
35 Cohen S I, Linse S, Luheshi L M, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(24):9758.
36 Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J].Nature Materials,2009,8(8):621.
37 Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J].Microporous & Mesoporous Materials,2013,168(3):57.
38 Campagnol N, Assche T V, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morpho-logies[J].Journal of Materials Chemistry A,2013,1(19):5827.
39 Yang H M, Song X L, Yang T L, et al. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction[J].RSC Advances,2014,4(30):15720.
40 Yang H, Du H, Zhang L, et al. Electrosynthesis and electrochemical mechanism of Zn-based metal-organic frameworks[J].International Journal of Electrochemical Science,2015,10(2):1420.
41 Mueller U, Schubert M, Teiche F, et al. Metal-organic frameworks prospective industrial applications[J].Journal of Materials Chemistry,2006,16(7):626.
42 Stassen I, Styles M, Assche T V, et al. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap[J].Chemistry of Materials,2015,27(5):379.
43 Yadnum S, Roche J, Lebraud E, et al. Site-selective synthesis of janus-type metal-organic framework composites[J].Angewandte Chemie International Edition,2014,53(15):4001.
44 Liu H, Wang H, Chu T, et al. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution[J].Journal of Materials Chemistry C,2014,2(41):1229.
45 Davydovskaya P, Pohle R, Tawil A, et al. Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection[J].Sensors & Actuators B Chemical,2013,187(1):142.
46 Yang Q, Xue C, Zhong C, et al. Molecular simulation of separation of CO2, from flue gases in CU-BTC metal-organic framework[J].AICHE Journal,2007,53(11):2832.
47 Marx S, Kleist W, Baiker A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J].Journal of Catalysis,2011,281(1):76.
48 Khun N W, Mahdi E M, Ying S, et al. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes[J].APL Materials,2014,2(12):124101.
49 Vandevoorde B, Ameloot R, Stassen I, et al. Mechanical properties of electrochemically synthesised metal-organic framework thin films[J].Journal of Materials Chemistry,2013,1(46):7716.
50 Campagnol N, Souza E R, De Vos D E, et al. Luminescent terbium-containing metal-organic framework films: New approaches for the electrochemical synthesis and application as detectors for explosives[J].Chemical Communications,2014,50(83):12545.
51 Cheng K Y, Wang J C, Lin C Y, et al. Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing[J].Dalton Transactions,2010,43(17):6536.
52 Li M, Dinc M. Reductive electrosynthesis of crystalline metal-organic frameworks[J].Journal of the American Chemical Society,2011,133(33):12926.
53 Kubo M, Chaikittisilp W, Okubo T. Oriented films of porous coordination polymer prepared by repeated in situ crystallization[J].Che-mistry of Materials,2008,20(9):2887.
54 Lu H, Zhu S. Interfacial synthesis of free-standing metal-organic framework membranes[J].European Journal of Inorganic Chemistry,2013,2013(8):1294.
55 Li M M, Dinc M. Selective formation of biphasic thin films of me-tal-organic frameworks by potential-controlled cathodic electrodeposition[J].Chemical Science,2013,5(1):107.
56 Zhu Y M, Zeng C H, Chu T S, et al. A novel highly luminescent LnMOF film: A convenient sensor for Hg2+ detecting[J].Journal of Materials Chemistry A,2013,1(37):11312.
57 Li W J, Feng J F, Lin Z J, et al. Patterned growth of luminescent metal-organic framework films: A versatile electrochemically-assisted microwave deposition method[J].Chemical Communications,2016,52(20):3951.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[7] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[8] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[9] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[10] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[11] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[12] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[13] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[14] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[15] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed