Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1442-1451    https://doi.org/10.11896/j.issn.1005-023X.2018.09.008
  材料综述 |
螺旋碳纤维的制备:形貌控制与生长机理
罗妍钰,李才亮,陈国华
华侨大学材料科学与工程学院,厦门 361021
Fabrication of Carbon Microcoils: Morphology Control and Growth Mechanism
LUO Yanyu, LI Cailiang, CHEN Guohua
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021
下载:  全 文 ( PDF ) ( 3911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 螺旋碳纤维自被发现以来,因其独特的三维螺旋结构引起了研究人员的关注。探究螺旋碳纤维的制备方法及其影响因素,对研究螺旋碳纤维的生长机理有着重要的作用。螺旋碳纤维是具有规则螺旋线圈或扭转结构的碳纤维,目前制备的螺旋碳纤维主要有单螺旋碳纤维和双螺旋碳纤维。碳纤维具有密度小、拉伸强度高、拉伸模量高、热导率好、导电以及电磁屏蔽波特性等特点,并且其力学性能、热性能及电性能都具有显著的各向异性。螺旋碳纤维不但具有与碳纤维类似的优异性能,并且所具有三维螺旋结构还赋予其良好的弹性、独特的电磁学以及生物催化等特性,在电子器件、手征催化、智能材料、隐身吸波材料、高性能和多功能复合材料等领域有着潜在的应用前景。   然而,如何得到螺旋形貌规整的碳纤维、螺旋碳纤维的手性拆分和分散问题以及螺旋碳纤维的规模性可控制备一直是研究的难点和关键。近年来,研究者们一直对螺旋碳纤维的生长机理及生长动力进行探究,通过构建合理的生长模型表明促进剂以及催化剂的晶型和尺寸等对碳纤维的双螺旋结构有着关键影响。   目前已能通过调控不同的制备条件制得形貌规整、结构均一的螺旋碳纤维,对其在各个领域的应用进行了一定的探索并取得了很大的成功。研究者们通过将螺旋碳纤维作为填料分散在复合材料中,利用螺旋碳纤维优异的性能,提高复合材料的综合性能或赋予复合材料的多功能性,以期实现复合材料在各个领域的应用。   本文归纳了螺旋碳纤维的制备与生长机理的研究进展,分别对螺旋碳纤维的制备条件以及研究者们对生长机理模型的探究进行了介绍,总结了通过调控制备方法、碳源种类、反应温度、催化剂种类、促进剂以及碳源与氢气进气量比值等条件下所得到的螺旋碳纤维的差异,从而对螺旋碳纤维的生长机理进行推测和讨论。本文分析了现阶段螺旋碳纤维所面临的问题并对螺旋碳纤维未来的发展进行了展望,以期为螺旋碳纤维的进一步可控制备和产业化发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗妍钰
李才亮
陈国华
关键词:  螺旋碳纤维  微观形貌  生长机理    
Abstract: Carbon microcoils (CMCs) attracts researchers’ attention due to their unique three-dimensional helical structure. The research of the carbon microcoils on the fabrication methods and influence play a prominent role in discussing the growth mechanism.CMCs is a kind of carbon fiber with regular coils or twisted structures, and mainly includes single-helix and double-helix carbon microcoils. CMCs not only has the similar excellent properties as carbon fiber, such as low density, high tensile strength, high tensile modulus, high thermal conductivity, high electric conductivity, electromagnetic shielding, but also shows anisotropy in mechanical properties, thermal properties and electrical properties. Carbon microcoils perform good elasticity, unique electromagnetism and biological catalysis, indicating its potential applications in electronic devices, chiral catalytic, intelligent materials, stealth absorbing materials, high performance and multifunctional composites.   However, it has been the difficulty and the key points of the research to obtain the regular helix shape, chiral resolving, dispersion and mass control preparation of CMCs. In recent years, researchers have explored the growth mechanism and growth kinetics of CMCs by constructing a applicable growth model, and the result reveals that the accelerant , crystal form and size of catalyst have crucial impact on CMCs structure.   Recently, CMCs with regular morphology and homogeneous structure has been obtained through regulating the fabrication conditions, and successfully applied in various fields. In order to enhance the comprehensive properties of composites, CMCs is added in working as filler, which can extend the composites application.    This review offers a retrospection of the research efforts with respect to thefabrication and growth mechanism of CMCs, and provides a accuratel descriptions about the fabrication factors and the research on the growth mechanisms of CMCs. The growth mechanisms of CMCs are speculated and discussed through the difference of CMCs from various conditions of preparation methods, types of carbon sources, reaction temperature, catalysts, accelerators and the ratio of carbon source to hydrogen gas intake. In this review, the future development of CMCs and problems which needs to be solved at this stage are proposed,which could be the reference for controllable preparation and industrialization of CMCs.
Key words:  carbon microcoil    micromorphology    growth mechanism
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TQ324.8  
基金资助: 华侨大学高分子与纳米新材料创新团队资助项目(Z14X0046);福建省科技项目(2017H2001)
通讯作者:  陈国华:通信作者,男,1964年生,教授,主要从事石墨烯制备及其聚合物基复合材料的研究 E-mail:17859750144@163.com;hdcgh@hqu.edu.cn   
作者简介:  罗妍钰:女,1994年生,硕士研究生,主要从事石墨烯基聚合物的研究
引用本文:    
罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
LUO Yanyu, LI Cailiang, CHEN Guohua. Fabrication of Carbon Microcoils: Morphology Control and Growth Mechanism. Materials Reports, 2018, 32(9): 1442-1451.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.008  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1442
1 Davis W R, Slawson R J, Rigby G R. An unusual form of carbon[J].Nature,1953,171(4356):756.
2 Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J].Journal of Catalysis,1972,26(1):51.
3 Baker R T K, Waite R J. Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene[J].Journal of Catalysis,1975,37(1):101.
4 Kim M S, Rodriguez N M, Baker R T K. The role of interfacial phenomena in the structure of carbon deposits[J].Journal of Catalysis,1992,134(1):253.
5 Motojima S, Kawaguchi M, Nozaki K, et al. Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics[J].Carbon,1991,29(29):379.
6 Motojima S, Asakura S, Hirata M, et al. Effect of metal impurities on the growth of micro-coiled carbon fibres by pyrolysis of acetylene[J].Materials Science & Engineering B,1995,34(1):L9.
7 Motojima S, Itoh Y, Asakura S, et al. Preparation of micro-coiled carbon fibres by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds[J].Journal of Ma-terials Science,1995,30(20):5049.
8 Chen X Q, Saito T, Kusunoki M, et al. Three-dimensional vapor growth mechanism of carbon microcoils[J].Journal of Materials Research,1999,14(11):4329.
9 Chen X Q, Motojima S. The growth patterns and morphologies of carbon micro-coils produced by chemical vapor deposition[J].Carbon,1999,37(11):1817.
10 Chen X Q, Motojima S, Iwanaga H. Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties[J].Carbon,1999,37(11):1825.
11 Tang N J, Yang Y, Lin K, et al. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties[J].Journal of Physical Chemistry C,2008,112(27):10061.
12 Li D W, Pan L, Qian J, et al. Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method[J].Carbon,2010,48(1):170.
13 Motojima S, Hirata M, Iwanaga H. Impurity-activated chemical vapor growth of micro-coiled carbon fibers[J].Journal of Chemical Vapor Deposition,1996,3(2):87.
14 Motojima S, Niwa T. Method and apparatus for manufacturing carbon fiber coils:EP,0982416[P].1999-09-02.
15 Chen X Q, Motojima S. Micro-structure and some surface properties of micro-helix carbon fibers[J].Materials Review,2000,14(9):56(in Chinese)
陈秀琴,元岛栖二.微旋管状碳纤维的微细构造和表面特性[J].材料导报,2000,14(9):56.
16 Motojima S,Chen X Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition[J].Journal of Applied Physics,1999,85(7):3919.
17 Motojima S,Chen X Q, Yang S M, et al. Properties and potential applications of carbon microcoils/nanocoils[J].Diamond & Related Materials,2004,13(11-12):1989.
18 Bi H, Kou K C, Zhang J Q, et al. Synthesis of micro-coiled carbon fibers by CVD[J].Journal of Synthetic Crystals,2007,36(3):559(in Chinese)
毕辉,寇开昌,张教强,等.CVD法制备微螺旋炭纤维的研究[J].人工晶体学报,2007,36(3): 559.
19 Liu Y, Shen Z. Preparation of carbon microcoils and nanocoils using activated carbon nanotubes as catalyst support[J].Carbon,2005,43(7):1574.
20 Chen Y, Liu C, Du J H, et al. Preparation of carbon microcoils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate[J].Carbon,2005,43(9):1874.
21 李文军,郭燕川,徐海涛,等.新型手征吸波材料—微碳卷的合成与表征[C]∥第二届全国隐身功能材料学术研讨会会议文集.北京:中国化学会,2004:42.
22 Kuzuya C, Kohda M, Hishikawa Y, et al. Preparation of carbon micro-coils involving the decompositionof hydrocarbons using PACT (plasma and catalyst technology) reactor[J].Carbon,2002,40(11):1071.
23 Okada Y, Takeuchi K, Yamanashi H, et al. Formation of carbon whiskers by heating with a carbon dioxide laser[J].Journal of Ma-terials Science Letters,1992,11(24):1715.
24 李春忠,王兰娟,胡彦杰,等.制备螺旋纳米碳纤维的方法:中国,100999315[P].2007-07-18.
25 Liu L, He P, Zhou K, et al. Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them[J].Journal of Materials Science,2014,49(12):4379.
26 Furuya Y, Hashishin T, Iwanaga H, et al. Interaction of hydrogen with carbon coils at low temperature[J].Carbon,2004,42(2):331.
27 Shibagaki K, Motojima S, Umemoto Y, et al. Outermost surface microstructure of as-grown, heat-treated and partially oxidized carbon microcoils[J].Carbon,2001,39(9):1337.
28 Li N, Kou K C, Chao M, et al. Preparation and characterization of micro-coiled carbon fibers[J].Journal of Inorganic Materials,2012,27(5):541(in Chinese)
李宁,寇开昌,晁敏,等.微螺旋碳纤维的制备与表征[J].无机材料学报,2012,27(5):541.
29 Wu F Y, Du J H, Liu C G, et al. The microstructure and energy storage characteristics of micro-coiled carbon fibers[J].New Carbon Materials,2004,19(2):81(in Chinese)
吴法宇,杜金红,刘辰光,等.螺旋炭纤维的微观结构与储能特性[J].新型炭材料,2004,19(2):81.
30 Yang S M, Hasegawa M, Chen X Q, et al. Synthesis and morphology of carbon microcoils produced using methane as a carbon source[J].Carbon,2007,45(7):1592.
31 Chen X Q, Hasegawa M, Yang S M, et al. Preparation of carbon microcoils by catalytic methane hot-wire CVD process[J].Thin Solid Films,2008,516(5):714.
32 Chen X Q, Motojima S. Growth of carbon micro-coils by pre-pyrolysis of propane[J].Journal of Materials Science,1999,34(15):3581.
33 Ge M, Shen Z M. Study of carbon micro-coils prepared by a vapor phase catalytic cracking process[J].New Carbon Materials,2003,18(1):31(in Chinese)
戈敏,沈曾民.气相催化裂解法制备微米级螺旋形炭纤维的研究[J].新型炭材料,2003,18(1):31.
34 Jian X, Wang D, Liu H, et al. Controllable synthesis of carbon coils and growth mechanism for twinning double-helix catalyzed by Ni nanoparticle[J].Composites Part B Engineering,2014,61(5):350.
35 Hui B, Kai C K, Ostrikov K, et al. Unconventional Ni-P alloy-catalyzed CVD of carbon coil-like micro- and nano-structures[J].Ma-terials Chemistry & Physics,2009,116(2):442.
36 Cui R, Li D, Fu X, et al. Growth of acarbon micro- and nanocoils mixture using NiSO4 as the catalyst precursor[J].Chemical Vapor Deposition,2015,21(1-2-3):78.
37 Yang S M, Ozeki I, Chen X Q, et al. Preparation of single-helix carbon microcoils by catalytic CVD process[J].Thin Solid Films,2008,516(5):718.
38 Yang S M, Chen X Q, Motojima S, et al. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts[J].Carbon,2005,43(4):827.
39 Yang S M, Chen X Q, Motojima S. Morphology of zigzag carbon nanofibers prepared by catalytic pyrolysis of acetylene using Fe-group containing alloy catalysts[J].Diamond & Related Materials,2004,13(1):85.
40 Yang S M, Chen X Q, Katsuno T, et al. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process[J].Materials Research Bulletin,2007,42(3):465.
41 Zhang M, Nakayama Y, Pan L. Synthesis of carbon tubule nanocoils in high yield using iron-coatedIndium Tin oxide as catalyst[J].Japanese Journal of Applied Physics,2000,39(12A):L1242.
42 Li D, Pan L, Qian J, et al. Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method[J].Carbon,2010,48(1):170.
43 Yang S M, Chen X Q, Motojima S. Morphology of the growth tip of carbon microcoils/nanocoils[J].Diamond & Related Materials,2004,13(11-12):2152.
44 Kanada R, Pan L, Akitab S, et al. Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst[J].Japanese Journal of Applied Physics,2008,47(4),1949.
45 Qi X, Zhong W, Yao X, et al. Controllable and large-scale synthesis of metal-free carbon nanofibers and carbon nanocoils over water-soluble NaxKy, catalysts[J].Carbon,2012,50(2):646.
46 Sun J, Koós A A, Dillon F, et al. Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst[J].Carbon,2013,60(12):5.
47 Zhou X H, Cui G L, Zhi L J, et al. Large-area helical carbon microcoils with superhydropho-bicity over a wide range of pH values[J].New Carbon Materials,2007,22(1):1.
48 Yong Q, Xin J, Cui Z. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: A reaction mechanism analysis[J].Journal of Physical Chemistry B,2005,109(46):21749.
49 Qi X, Xu J, Zhong W, et al.High yield synthesis and photoluminescence properties of carbon coils over Al2O3 substrates[J].Diamond & Related Materials,2015,51:30.
50 Oliphant C J, Arendse C J, Malgas G F, et al. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD[J].Journal of Nanoscience & Nanotechnology,2009,9(10):5870.
51 Motojima S, Asakura S, Kasemura T, et al. Catalytic effects of metal carbides oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers[J].Carbon,1996,34(3):289.
52 Yang S M, Chen X Q, Kikuchi N, et al. Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (CNCs)[J].Materials Letters,2008,62(10-11):1462.
53 Motojima S, Hasegawa I, Kagiya S, et al. Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni catalyst and sulfur or phosphorus compound impurity[J].Applied Physics Letters,1993,62(19):2322.
54 Motojima S, Hasixgawa I, Kagiya S, et al. Vapor phase preparation of micro-coiled carbon fibers by metal powder catalyzed pyrolysis of acetylene containing a small amount of phosphorus impurity[J].Carbon,1995,33(8):1167.
55 Chen X Q. The micro-morphologies of micro-helix carbon fibers prepared in a vapor phase[J].New Carbon Materials,2000,15(3):23(in Chinese).
陈秀琴.CVD法制备微旋管状炭纤维的微观形貌[J].新型炭材料,2000,15(3):23.
56 Shibagaki K, Motojima S. Distribution of sulfur in bulk carbon microcoils[J].Carbon,2001,39(10):1605.
57 In-Hwang W, Yanagida H, Motojima S. Vapor growth of carbon micro-coils by the Ni catalyzed pyrolysis of acetylene using rotating substrate[J].Materials Letters,2000,43(1-2):11.
58 In-Hwang W,Chen X Q, Kawabe K, et al. Effect of external electromagnetic field and bias voltage on the chemical vapor growth of the carbon micro-coils and their properties[J].Materials Science & Engineering B,2001,86(1):1.
59 Jeon Y C, Kim S H. The formation of the carbon microcoils without the catalyst on the mesh-type stainless steel substrate[J].Advanced Materials Research,2014,894:116.
60 Kawaguchi M, Nozaki K, Motojima S, et al. A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis[J].Journal of Crystal Growth,1992,118:309.
61 Chen X Q, Yang S M, Motojima S. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene[J].Materials Letters,2002,57(1):48.
62 Muneaki H.Growth kinetics of carbon microcoils[D].Dayton:University of Dayton,2014.
63 Su G, Du J H, Fan Y Y, et al. Comparing of growth mechanism of carbon nanofibers prepared by different catalysts[J].Chinese Journal of Material Research,2001,15(6):623(in Chinese).
苏革,杜金红,范月英,等.用不同催化剂制备纳米炭纤维的生长机理[J].材料研究学报,2001,15(6):623.
64 In-Hwang W, Kuzuya T, Iwanaga H, et al. Oxidation characteristics of the graphite micro-coils, and growth mechanism of the carbon coils[J].Journal of Materials Science,2001,36(4):971.
65 Luo Q M, Liu D Y, Wang H X, et al. Effect of sulfur element on solid catalytic growth mechanism of micro-coiled carbon fibers[J].Carbon,2008,1:43(in Chinese).
罗启梅,刘登友,王辉宪,等.硫在螺旋炭纤维固相催化生长机理中的作用[J].炭素,2008,1:43.
     (责任编辑 谢 欢)


Yanyu Luo received her B E degree in applied chemistry from Huaqiao University in 2015. She is postgraduate student in the College of Materials Science and Engineering, Huaqiao University and under the supervision of Prof. Guohua Chen. Her research field is preparation and application of functional materials.
   罗妍钰,2015年毕业于华侨大学,获得工学学士学位。现为华侨大学材料科学与工程学院硕士研究生,在陈国华教授指导下进行研究。目前主要的研究领域为功能材料制备与应用。

Guohua Chen received the B E degree from Huaqiao University in 1984 and received the Ph D degree in Materials Sciencse and Engineering at Tianjin University. He was selected to the ministry of education in the new century excellent talents support program in 2004, and joined “double hundred” talent project in Fujian province in 2016. He is also the member of the expert
committee and standard committee in the Chinese graphene industry innovation alliance, director of the graphene powder and composite materials’ research center of Fujian province, He has been in charge of five National Natural Science Foundation projects and sevral Science and Technology projects in Fujian province. His research interests focus in the exfoliation of graphite and the preparation of graphene and the composite functional materials. He has published more than 80 papers abstracted in SCI, and with 3 500 total cited.
[1] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[2] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[3] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[4] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[5] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[6] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[7] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[8] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[9] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[10] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[11] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[12] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[13] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[14] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[15] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed