Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2243-2251    https://doi.org/10.11896/cldb.18070118
  金属与金属基复合材料 |
钆基稀土纳米颗粒的制备及应用研究进展
胡燕燕1,2,杨春林3,乔慧娜1,2,欧梅桂1,2
1 贵州大学材料与冶金学院,贵阳 550025
2 高性能金属结构材料与制造技术国家地方联合工程实验室,贵阳 550025
3 贵阳学院化学与材料工程学院,贵阳 550003
Research Progress in the Preparation and Application of Gadolinium-based Nanoparticles
HU Yanyan1,2, YANG Chunlin3 , QIAO Huina1,2 , OU Meigui1,2
1 College of Materials and Metallurgy, University of Guizhou,Guiyang 550025
2 National Local Joint Engineering Laboratory for High Performance Metal Structure Materials and Manufacturing Technology, Guiyang 550025
3 College of Chemistry and Materials Engineering, Guiyang College, Guiyang 550003
下载:  全 文 ( PDF ) ( 5507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土元素因具有特殊的4f电子结构、相对大的原子序数和独特的光电磁性质,吸引了研究者的广泛关注,被应用于稀土基纳米颗粒的制备上,特别是钆基纳米粒子的制备及理化性能研究方面。研究表明,稀土基纳米材料易掺杂其他稀土及金属离子,稳定性好,声子能量低,具有较大的中子吸收截面的特性,因而在发光、生物及医药等领域得到了广泛的应用。
研究者们通过采用不同的制备方法得到了不同形貌和结构的稀土纳米材料,以改善其发光性能、弛豫性能、药物携带性能、靶向性等,以便更好地将其应用于发光、成像、医学治疗等不同领域中。制备氧化钆纳米粒子的方法多为液相法,该法具有操作简单、粒度可控、分散性好的特点。
稀土发光材料能吸收或发射从紫外光区到红外光区的各种波长的电磁波辐射,因此近年来,除了研究不同稀土离子掺杂氧化钆对其发光性能的影响外,研究者们还利用多种稀土离子的共掺杂、稀土离子与金属离子的共掺杂,以达到调节发光、提高色彩饱和度以及发光强度的目的。
钆离子因拥有七个未配对电子而被用作磁共振造影剂。目前,临床上应用最多的是以纳米氧化铁为主的阴性造影剂和以二乙三胺五醋酸钆(Gd-DTPA)为主的阳性造影剂。但纳米氧化铁成像存在信号强度较低、图像较暗、易产生伪影等问题,所以目前对于阴性造影剂的研究较少。而Gd-DTPA与氧化钆相比,后者磁性粒子密度高于前者,因此,近来的研究热点集中于通过优化制备工艺来提高氧化钆纳米材料的弛豫性能,以及通过结合氧化钆纳米材料的荧光特性,来实现其光学-磁共振成像(MRI)双模态探测功能。另外,高原子序数的钆还能作为放射增敏剂,可增加肿瘤细胞放射治疗的敏感性,相比于金、铪、铋等同样具有放射增敏潜力的增敏剂,钆基放射增敏剂能结合MRI实现图像引导放射治疗。同时,相比于铅元素,钆具有更高的射线吸收性能,因此其在屏蔽材料的应用上受到重视。
本文比较了氧化钆纳米颗粒的几种主要制备方法及它们的优缺点,简述氧化钆纳米颗粒在发光材料、医学治疗、屏蔽材料方面的应用,并指出其研究尚存在的问题及发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡燕燕
杨春林
乔慧娜
欧梅桂
关键词:  氧化钆纳米颗粒  发光  磁共振成像  放射增敏剂  生物探针    
Abstract: In recent years, rare earth elements have attracted extensive attention due to their special 4f electronic structure, relatively large atomic number and unique optical and magnetic properties. Thus, they have been widely adopted in the preparation of rare earth based nanoparticles, especially, the preparation and physicochemical properties of gadolinium-based nanoparticles. The studies demonstrated that the rare earth-based nanomaterials are easily doped with other rare earth as well as metal ions, with good stability, low phonon energy, and a large neutron absorption cross-section, which have been extensively applied in the fields of luminescence, biological and medicine.
Researchers have obtained rare earth nanomaterials with various morphologies and microstructures via different preparation methods, for improving their luminescence properties, relaxation properties, drug carrying properties and targeting. so the nanoparticles can be better applied in different fields, such as luminescence, imaging, medical treatment and so on. The gadolinium oxide nanoparticles is mostly prepared by liquid phase method since the operation has the characteristics of simple operation, particle size is controllable and the dispersibility of nanoparticles is good.
The rare earth luminescent materials can absorb or emit electromagnetic wave radiation of various wavelengths from ultraviolet to infrared regions. Therefore, to study the influence of different rare earth ions doped gadolinium oxide on their luminescence performance, researchers have also utilized the co-doping of various rare earth ions, rare earth ions and metal ions to achieve the goal of regulating the luminescence, ameliorating the color saturation and the luminescence intensity by adjusting the doping ratio.
Gadolinium ion is used as a magnetic resonance contrast agent on account of its seven unpaired electrons. Currently, the most commonly used negative contrast agent in clinic is mainly based on nano-iron oxide, and the positive contrast agent is mainly based on gadolinium-diethylenetriamine pentaacetic(Gd-DTPA). There are few investigations on negative contrast agents since the nano-iron oxide imaging exists a series of problems, such as low signal intensity, dark image and artifacts Gadolinium oxide has higher density of magnetic particles than that of the Gd-DTPA, therefore, the recent research hotspots have been revolved round improving the relaxation properties of gadolinium oxide nanomaterials through optimizing the preparation process, and combining the fluorescence and magnetism of gadoliniumoxide nanomaterials to realize the dual mode detection function of optical magnetic resonance imaging (MRI). Besides, high atomic number of gadolinium can act as a radiosensitizer as well, which may enhance the sensitivity of tumor cells to radiotherapy. Hafnium and bismuth are both sensitizers with radiosensitizating potential as well as the gold, furthermore, the Gd-based sensitizers combining MRI can realize image-guided radiation therapy. Moreover, gadolinium has attached importance to the application of shielding materials due to its higher ray absorption properties than that of the lead.
This paper compares several main preparation methods ofgadolinium oxide nanoparticles and their characteristics. The applications of gadoli-nium oxide nanoparticles in luminescent materials, medical treatment and shielding materials are briefly described and finally the existing problems and development directions of gadolinium oxide nanoparticles are pointed out.
Key words:  gadolinium oxide nanoparticles    luminescence    magnetic resonance    radiosensitizer    bioprobe
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  O482.31  
基金资助: 贵州省教育厅工程研究中心项目(黔教合KY字[2017]016);贵州省教育厅科技人才成长项目(黔教合KY字[2017]238);贵州省教育厅创新群体重大研究项目(2016021)
作者简介:  胡燕燕,就读于贵州大学。在欧梅桂教授的指导下进行研究,目前主要研究方向为稀土氧化物的合成及其应用。
欧梅桂,贵州大学材料与冶金学院教授,硕士研究生导师。2000年7月本科毕业于贵州大学材料与冶金学院,2009年5月毕业于法国里昂国立应用科学院,并取得博士学位。主要从事功能材料及金属结构材料方面的研究。近年来,在功能材料领域发表多篇论文,包括Ceramics International、Journal of Colloid and Interface Science、The Journal of Physical Chemistry、Photochemistry and Photobiology和Advanced Fonctional Materials等。
引用本文:    
胡燕燕, 杨春林, 乔慧娜, 欧梅桂. 钆基稀土纳米颗粒的制备及应用研究进展[J]. 材料导报, 2019, 33(13): 2243-2251.
HU Yanyan, YANG Chunlin , QIAO Huina , OU Meigui. Research Progress in the Preparation and Application of Gadolinium-based Nanoparticles. Materials Reports, 2019, 33(13): 2243-2251.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070118  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2243
1 Xu J Q, Chen Y P, Wang H X. Journal of Zhengzhou University of Light Industry (Natural Science), 2004, 19(1),1 (in Chinese).徐甲强, 陈玉萍, 王焕新.郑州轻工业学院学报:自然科学版, 2004, 19(1), 1.2 Feng L F, Zhang X. Zhejiang Journal of Preventive Medicine, 2013, 25(9), 32 (in Chinese).冯玲芳, 张幸. 浙江预防医学, 2013, 25(9), 32.3 Mccarthy J R, Weissleder R. Advanced Drug Delivery Reviews, 2008, 60(11), 1241.4 eljka A, Lojpur V,Nikolic' M G,et al. Journal of Luminescence, 2014, 145, 466.5 Park J Y, Baek M J, Choi E S, et al. ACS Nano, 2009, 3(11), 3663.6 Cho H K, Cho H J, Lone S, et al. Journal of Materials Chemistry, 2011, 21(39), 15486.7 Luan D. Preparation and properties of Gd2O3∶Eu and Fe3O4@ Gd2O3∶Eu nanolabeled particles, Master's Thesis, Northeastern University, China, 2008 (in Chinese).栾丹.Gd2O3∶Eu和Fe3O4@ Gd2O3∶Eu纳米标记粒子的制备与性能研究. 硕士学位论文.东北大学, 2008.8 Liu G X, Bai H Y, Dong X T, et al. Journal of the Chinese Ceramic Society, 2011, 39(9), 1411(in Chinese).刘桂霞, 白海英, 董相廷, 等.硅酸盐学报, 2011, 39(9), 1411.9 Mowat P, Mignot A, Rima W, et al. Journal of Nanoscience and Nanotechnology, 2011, 11(9), 7833.10 Dr C F, Jungk H O. Angewandte Chemie International Edition, 2001, 40(2), 359.11 Bazzi R, Flores M A, Louis C, et al. Journal of Colloid & Interface Science, 2004, 273(1), 191.12 Flores González M A, VillanuevaIbáez M J, Santiago L D, et al. Superficies Y Vacio, 2006, 19(2), 23.13 Hao J. Preparation technology of ultra-small Gd2O3 nanoparticles and evaluation of MRI contrast enhancement. Master's Thesis, Wuhan University of Technology, China, 2014 (in Chinese).郝晶. 超小Gd2O3纳米粒子的制备技术及MRI造影增强效果评价. 硕士学位论文,武汉理工大学, 2014.14 Cai S H, Ou M G, Yang C L. Materials Review B:Research Papers, 2013, 27(4), 21 (in Chinese).蔡少韩, 欧梅桂, 杨春林. 材料导报:研究篇, 2013, 27(4), 21.15 Yang C L, Zhu Q W, Ou M G. New Chemical Materials, 2017(3), 199 (in Chinese).杨春林,朱琦玮,欧梅桂.化工新型材料, 2017(3), 199.16 Ou M G, Cai S H, Yang C L. Chinese Journal of Luminescence, 2013, 34(5), 554 (in Chinese).欧梅桂,蔡少韩,杨春林, 等.发光学报, 2013, 34(5), 554.17 Ou M G, Yang C L, Cai S H, et al. Advanced Materials Research, 2013, 813, 323.18 Zhu Q W. Preparation and luminescence properties of rare earth core-shell nanoparticles. Master's Thesis, Guizhou University, China, 2015(in Chinese).朱琦玮.稀土核壳结构纳米颗粒的制备及发光性能研究.硕士学位论文,贵州大学, 2015.19 Tian G, Gu Z J, Liu X X, et al. Journal of Physical Chemistry C, 2011, 115(48), 23790.20 王军, 李旺, 宁爱凤, 等.中国专利,201310013691.4, 2014.21 Chen S S, Chen X H, Ding M J, et al. Journal of the Chinese Ceramic Society, 2007, 35(2), 178(in Chinese).陈思顺,陈新华,丁明洁,等.硅酸盐学报, 2007, 35(2), 178.22 Liu S W. Preparation and luminescence properties of Y2O3∶Tb3+ and Gd2O3∶Tb3+ nanomaterials. Master's Thesis, Hunan University, China, 2011 (in Chinese).刘少武.Y2O3∶Tb3+和Gd2O3∶Tb3+纳米材料的制备及发光性能研究.硕士学位论文,湖南大学,2011.23 Zhai Y Q, Liu Y H, You Z J, et al. Journal of Synthetic Crystals, 2011, 40(6), 1440(in Chinese).翟永清, 刘亚红, 游志江, 等.人工晶体学报, 2011, 40(6), 1440. 24 Liu Y H. Preparation and properties of Gd2O3 based rare earth luminescent materials with special morphology of lanthanum and cerium ions. Master's Thesis, Hebei University, China, 2012 (in Chinese).刘亚红.铕、镝离子掺杂的特殊形貌Gd2O3基稀土发光材料的制备及性质研究.硕士学位论文,河北大学, 2012.25 Zhu W Q, Chen H J, Xing X P, et al. Journal of Xi'an Polytechnic University, 2014(2), 187(in Chinese).朱文庆,陈浩军,邢西萍,等.西安工程大学学报, 2014(2), 187.26 La L B T, Leong Y, Watts H P, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 13.27 Ranjan S K,Soni A K,Rai V K. Materials Today: Proceedings, 2017, 4(4), 5593.28 Heiba Z K,Mohamed M B. Journal of Molecular Structure, 2015, 1102, 135.29 Jia Y,Song Y,Bai Y,et al. Luminescence, 2011, 26(4), 259.30 Li D,Qin W P,Aidilibike T,et al. Journal of Alloys and Compounds, 2016, 675, 31.31 Liu G X, Wang J X, Dong X T, et al. Journal of Inorganic Materials, 2007, 22(5), 803(in Chinese).刘桂霞, 王进贤, 董相廷, 等. 无机材料学报, 2007, 22(5), 803.32 Bai H Y, Liu G X, Dong X T, et al. Journal of the Chinese Chemical Society, 2011, 69(7), 783(in Chinese).白海英, 刘桂霞, 董相廷, 等. 化学学报, 2011, 69(7), 783.33 Zou Y. Novel multicolor labeling and fluorescence imaging markers. Master's Thesis, Jinan University, China, 2014 (in Chinese).邹阳. 新型多色标记和荧光成像标记物研究.硕士学位论文,暨南大学, 2014.34 Huang F, Chen D Q. Journal of Materials Chemistry C, 2017, 5(21), 5176.35 Riegler J, Wells J A, Kyrtatos P G, et al. Biomaterials, 2010, 31(20), 5366.36 Liu Y P. Synthesis and cell imaging of magnetic rare earth fluorescent multifunctional nanoparticles. Master's Thesis, Huazhong University of Science and Technology, China, 2013 (in Chinese).刘玉萍. 磁性稀土荧光多功能纳米颗粒的合成及细胞成像研究.硕士学位论文,华中科技大学, 2013.37 Liu Z,Ren J S,Qu X G. Scientia Sinica Chimica, 2017, 47(2), 155.38 Xu L. Study on structural evolution and electromagnetic properties of cerium oxide clusters. Master's Thesis, Southwest University, China, 2013 (in Chinese).许琳. 氧化钆团簇的结构演化和电磁性质的研究.硕士学位论文, 西南大学, 2013.39 Liang G H. Development of a novel MRI contrast agent and a new molecular diagnostic method based on magnetic relaxation switch technology. Master's Thesis, Fudan University, China, 2013 (in Chinese).梁国海.新型MRI造影剂的研制及基于磁性弛豫开关技术的分子诊断新方法研究.硕士学位论文,复旦大学, 2013.40 Branka B S, Vukoman J, Du an M, et al. Journal of Nanoparticle Research, 2014, 16(10), 2663.41 Fortin M A, Rodrigo M P J, S derlind F, et al. Nanotechnology, 2007, 18(39), 395501.42 Jie F, Prashant C, Liu X L, et al. Biomaterials, 2014, 35(5), 1636.43 Detappe A, Kunjachan S, Sancey L, et al. Journal of Controlled Release, 2016, 238, 103.44 Luchette M, Korideck H, Makrigiorgos M, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(8), 1751.45 Miladi I, Aloy M T, Armandy E, et al. Nanomedicine Nanotechnology Biology & Medicine, 2015, 11(1), 247.46 Hainfeld J F, Dilmanian F A, Zhong Z, et al. Physics in Medicine & Biology, 2010, 55(11), 3045.47 Li Y, Liu W, Wang J J, et al. Progress in Modern Biomedicine, 2016, 16(5), 986 (in Chinese).李勇, 刘祎, 王建杰, 等. 现代生物医学进展, 2016, 16(5), 986.48 Porcel E, Tillement O, Lux F, et al. Nanomedicine, 2014, 10(8), 1601.49 Rima W, Sancey L, Aloy M T, et al. Biomaterials, 2013, 34(1), 181.50 tefaníková L, Porcel E, Eustache P, et al. Cancer Nanotechnology, 2014, 5(1), 6.51 tefaníková L, Lacombe S, Salado D, et al. Journal of Nanobiotechnology, 2016, 14(1), 63.52 Porcel Erika, Tillement O, Lux F, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(8), 1601.53 He Y Y. Journal of International Neurology and Neurosurgery, 2017, 44(1), 68(in Chinese).何永跃.国际神经病学神经外科学杂志, 2017, 44(1), 68.54 Siegel R, Naishadham D, Jemal A. CA: A Cancer Journal for Clinicians, 2013, 63(1), 11.55 黄忠兵.中国专利,201610531117.1, 2016.56 Cui D T. Preparation of bellowin-labeled cerium oxide nanoparticles and its targeted imaging experiment. Master's Thesis, Southern Medical University, China, 2015 (in Chinese).崔丹婷.铃蟾肽标记的氧化钆纳米微粒的制备及其靶向成像实验研究.硕士学位论文,南方医科大学,2015.57 Zhang S C. Modification of cerium oxide and preparation of cerium oxide/polyethylene shielding material. Master's Thesis, Xibei University, China, 2015 (in Chinese).张圣辰.氧化钆的改性及氧化钆/聚乙烯屏蔽材料制备.硕士学位论文,西北大学,2015.58 Chen J, Huang H L, Qian Y Y, et al. Sichuan Rare Earth, 2008(3), 14 (in Chinese).陈俊,黄宏林,钱玉英,等. 四川稀土, 2008(3), 14.59 Wang H B. Preparation and properties of cerium oxide/polyetheretherketone composites.Master's Thesis, Jilin University, China, 2013 (in Chinese).王海滨. 氧化钆/聚醚醚酮复合材料的制备及性能研究.硕士学位论文, 吉林大学, 2013.60 Zhang Y B. Preparation and properties of cerium oxide neutron absorbing materials. Master's Thesis, Shandong University, China, 2017 (in Chinese).张羽白. 氧化钆中子吸收材料制备及性能研究.硕士学位论文, 山东大学, 2017.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[3] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[4] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[5] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[6] 张晓英,周梓良,杨伟光,王锋. 掺Eu2+蓝光长余辉材料发光性能影响因素[J]. 材料导报, 2019, 33(15): 2497-2504.
[7] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[8] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[9] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[10] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[11] 张欣, 赵韦人, 周益羊, 鲁重瑞, 廖子锋. 蓝光发射荧光粉Ba3P4O13:Eu2+的发光特性及热稳定性[J]. 材料导报编辑部, 2018, 32(6): 855-859.
[12] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[13] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[14] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[15] 于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed