Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 1959-1966    https://doi.org/10.11896/j.issn.1005-023X.2018.12.004
  材料研究 |
P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物 的温度及葡萄糖响应行为
杨磊1,王乐民1,李佳星1,范晓光2,郝浩然1,裴红杰1,伞迦楠1,薛钧文1
1 辽宁石油化工大学化学化工与环境学部,抚顺 113001;
2 沈阳农业大学工程学院,沈阳 110866
Temperature- and Glucose-responsive Behaviors of P(NIPAAm-co- AAPBA-co-HPM-co-TMSPM) Quaternary Copolymers
YANG Lei1,WANG Lemin1,LI Jiaxing1,FAN Xiaoguang2,HAO Haoran1,PEI Hongjie1, SAN Jianan1,XUE Junwen1
1 College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001;
2 College of Engineering, Shenyang Agricultural University, Shenyang 110866
下载:  全 文 ( PDF ) ( 4120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过自由基聚合法将N-异丙基丙烯酰胺(N-isopropylacrylamide, NIPAAm)、3-丙烯酰胺基苯硼酸(3-acrylamidophenylboronic acid, AAPBA)、甲基丙烯酸羟丙酯(Hydroxypropyl methacrylate, HPM)和甲基丙烯酸(3-三甲氧基硅)丙酯(3-trimethoxysilylpropyl methacrylate, TMSPM)合成为P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物。采用傅里叶变换红外光谱、核磁共振氢谱和动态光散射等手段对终产物进行化学结构、分子组成和响应行为等方面的鉴定与考察。结果表明合成的共聚物由NIPAAm、AAPBA、HPM和TMSPM按照设计的反应物的物质的量比组成,为短链型聚合物,兼具温度和葡萄糖双重响应性能。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨磊
王乐民
李佳星
范晓光
郝浩然
裴红杰
伞迦楠
薛钧文
关键词:  聚N-异丙基丙烯酰胺  苯硼酸  多重响应性聚合物  动态光散射  水力学直径    
Abstract: The P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM) quaternary copolymers were synthesized by free radical polymerization of N-isopropylacrylamide (NIPAAm),3-acrylamidophenylboronic acid (AAPBA), hydroxypropyl methacrylate (HPM) and 3-trimethoxysilylpropyl methacrylate (TMSPM). Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance hydrogen (1H-NMR) spectroscopy and dynamic light scattering (DLS) technique were used to analyze and identify the chemical structure, molecular composition and responsive behaviors of the copolymers. The results indicated that the resultant copolymers with short chains, were composed of NIPAAm, AAPBA, HPM and TMSPM in the designed molar ratios of reactants, and they displayed excellent dual-response towards temperature and glucose.
Key words:  poly(N-isopropylacrylamide)    phenylboronic acid    multiple responsive polymer    dynamic light scattering    hydrodynamic diameter
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  O632  
  O625  
基金资助: 国家自然科学基金(21604034);辽宁省博士启动基金(20170520391);辽宁省教育厅科学研究一般项目(LSNYB201619;L2015307)
作者简介:  杨磊:女,1982年生,博士,讲师,研究方向为智能材料和生物材料 E-mail:leiyang1982@yahoo.com
引用本文:    
杨磊,王乐民,李佳星,范晓光,郝浩然,裴红杰,伞迦楠,薛钧文. P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物 的温度及葡萄糖响应行为[J]. 《材料导报》期刊社, 2018, 32(12): 1959-1966.
YANG Lei,WANG Lemin,LI Jiaxing,FAN Xiaoguang,HAO Haoran,PEI Hongjie, SAN Jianan,XUE Junwen. Temperature- and Glucose-responsive Behaviors of P(NIPAAm-co- AAPBA-co-HPM-co-TMSPM) Quaternary Copolymers. Materials Reports, 2018, 32(12): 1959-1966.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.004  或          http://www.mater-rep.com/CN/Y2018/V32/I12/1959
1 Chen Lin, Yang Yongzhen, Liu Xuguang. Research progress in magnetic thermosensitive hydrogels based on N-isopropylacrylamide[J]. Materials Review A: Review Papers,2014,28(6):53(in Chinese).
陈琳,杨永珍,刘旭光.基于N-异丙基丙烯酰胺的磁性温敏水凝胶研究进展[J].材料导报:综述篇,2014,28(6):53.
2 Ma X C, Liu Q X. Preparation of poly(N-isopropylacrylamide)-block-(acrylic acid)-encapsulated proteinaceous microbubbles for delivery of doxorubicin[J]. Colloids & Surfaces B: Biointerface,2017,154(6):115.
3 Reinicke S, Rees H C, Espeel P, et al. Immobilization of 2-deoxy-d-ribose-5-phosphate aldolase in polymeric thin films via the Langmuir-Schaefer technique[J]. ACS Applied Materials & Interfaces,2017,9(9):8317.
4 Dzhoyashvili N A, Thompson K, Gorelov A V, et al. Film thickness determines cell growth and cell sheet detachment from spin-coated poly(N-isopropylacrylamide) substrates[J]. ACS Applied Materials & Interfaces,2016,8(41):27564.
5 Burek M, Waskiewicz S, Lalik A, et al. Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture[J]. Biomaterials Science,2017,5(2):234.
6 Guan Ying, Luo Qiaofang, Zhang Yongjun. Synthesis of glucose-sensitive core-shell microgels[J]. Acta Polymerica Sinica,2010(3):280(in Chinese).
关英,罗巧芳,张拥军.核壳结构葡萄糖敏感微凝胶的制备[J].高分子学报,2010(3):280.
7 Wu J Z, Bremner D H, Li H Y, et al. Synthesis and evaluation of temperature-and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery[J]. Materials Science & Engineering C,2016,69(6):1026.
8 Kajisa T, Sakata T. Glucose-responsive hydrogel electrode for biocompatible glucose transistor[J]. Science & Technology of Advanced Materials,2017,18(1):26.
9 Zhang S B, Chu L Y, Xu D. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature[J]. Polymers for Advanced Technologies,2008,19(8):937.
10 Kataoka K, Miyazaki H, Bunya M, et al. Totally synthetic polymer gels responding to external glucose concentration:Their preparation and application to on-off regulation of insulin release[J].Journal of the American Chemical Society,1998,120(48):12694.
11 Matsumoto A, Ikeda S, Harada A, et al. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions[J]. Biomacromolecules,2003,4(5):1410.
12 Lapeyre V, Gosse I, Chevreux S, et al. Monodispersed glucose-responsive microgels operating at physiological salinity[J]. Biomacromolecules,2006,7(12):3356.
13 Liu Ziwei. Study on the temperature-and glucose-sensitive copolymer microgels[D]. Shanghai: Donghua University,2007(in Chinese).
刘紫薇.温度和葡萄糖双重敏感性共聚物微凝胶的研究[D].上海:东华大学,2007.
14 Hoare T, Pelton R. Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels[J]. Macromolecules,2007,40(3):670.
15 Hoare T, Pelton R. Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity[J]. Biomacromo-lecules,2008,9(2):733.
16 Farooqi Z H, Wu W T, Zhou S Q, et al. Engineering of phenylboronic acid based glucose-sensitive microgels with 4-vinylpyridine for working at physiological pH and temperature[J]. Macromolecular Chemistry and Physics,2011,212(14):1510.
17 Farooqi Z H, Khan A, Siddiq M. Temperature-induced volume change and glucose sensitivity of poly[(N-isopropylacry-lamide)-co-acrylamide-co-(phenylboronic acid)] microgels[J]. Polymer International,2011,60(10):1481.
18 Wu Qian. Preparation and properties of glucose-responsive microgels containing phenylboronic acid group[D]. Hangzhou: Zhejiang University,2012(in Chinese).
吴茜.苯硼酸基糖敏微凝胶的制备与性能研究[D].杭州:浙江大学,2012.
19 Zhang Y J, Guan Y, Zhou S Q. Permeability control of glucose-sensitive nanoshells[J]. Biomacromolecules,2007,8(12):3842.
20 Shiomori K, Ivanov A E, Galaev I Y, et al. Thermoresponsive pro-perties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid[J]. Macromolecular Chemistry & Physics,2004,205(1):27.
21 Ivanov A E, Shiomori K, Kawano Y, et al. Effects of polyols, saccharides, and glycoproteins on thermoprecipitation of phenylbo-ronate-containing copolymers[J]. Biomacromolecules,2006,7(4):1017.
22 Zenkl G, Mayr T, Klimant I. Sugar-responsive fluorescent nanos-pheres[J]. Macromolecular Bioscience,2008,8(2):146.
23 Yang L, Liu T Q, Song K D, et al. Effect of intermolecular and intramolecular forces on hydrodynamic diameters of poly(N-isopropylacrylamide) copolymers in aqueous solutions[J]. Journal of Applied Polymer Science,2013,127(6):4280.
24 Tang Z, Guan Y, Zhang Y J. Contraction-type glucose-sensitive microgel functionalized with a 2-substituted phenylboronic acid ligand[J]. Polymer Chemistry,2014,5(5):1782.
25 Tang Y, Lu J R, Lewis A L, et al. Swelling of zwitterionic polymer films characterized by spectroscopic ellipsometry[J]. Macromolecules,2001,34(25):8768.
26 Liu Ziwei, Li Lan, Zhao Huipeng, et al. Synthesis and characterization of 3-acrylamidophenylboronic acid[J]. Synthetic Technology and Application,2007,22(3):13(in Chinese).
刘紫微,李兰,赵辉鹏,等.3-丙烯酰胺基苯硼酸的合成与表征[J].合成技术及应用,2007,22(3):13.
27 Yang L, Pan F, Zhao X B, et al. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment[J]. Langmuir,2010,26(22):17304.
28 Yao Y, Shen H Y, Zhang G H, et al. Synthesis of poly (N-isopropylacrylamide)-co-poly(phenylboronate ester) acrylate and study on their glucose-responsive behavior[J]. Journal of Colloid & Interface Science,2014,431(10):216.
29 Xing Shuying, Guan Ying, Zhang Yongjun. Swelling kinetics of P(NIPAM-co-AAPBA) microgel in glucose solution[J]. Acta Polymerica Sinica,2011(6):567(in Chinese).
邢淑莹,关英,张拥军.葡萄糖敏感微凝胶的溶胀动力学研究[J].高分子学报,2011(6):567.
30 Picos-Corrales L A, Licea-Claverie A, Cornejo-Bravo J M, et al. Well-defined N-isopropylacrylamide dual-sensitive copolymers with LCST≈38 ℃ in different architectures: Linear, block and star polymers[J]. Macromolecular Chemistry & Physics,2012,213(3):301.
31 Khan A, Alhoshan M. Preparation and characterization of pH-responsive and thermoresponsive hybrid microgel particles with gold nanorods[J]. Journal of Polymer Science Part A: Polymer Chemistry,2013,51(1):39.
[1] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[2] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[3] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[4] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[5] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed