Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3309-3317    https://doi.org/10.11896/j.issn.1005-023X.2018.19.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状
肖国庆1,勾黎敏1,丁冬海1,2,3
1 西安建筑科技大学材料与矿资学院,西安 710055;
2 西安建筑科技大学材料科学与工程博士后流动站,西安 710055;
3 中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471039
A State of the art Review on PVDC based Carbon Electrode for Supercapacitors
XIAO Guoqing1, GOU Limin1, DING Donghai1,2,3
1 College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055;
2 Postdoctoral Mobile Research Station of Materials Science and Engineering, Xi’an University of Architectureand Technology, Xi’an 710055;
3 State Key Laboratory of Advanced Refractories, Sinosteel LuoyangInstitute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 2572KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳电极是超级电容器的关键材料,在很大程度上决定了超级电容器的性能,其发展趋势是高比表面积、高堆积密度、高中孔率、高电导率、高纯度和高性价比以及良好的电解液浸润性(即“六高一良好”)。目前,活性碳纤维、碳凝胶、碳纳米管、模板碳等各种碳材料作为超级电容器电极材料的研究均有报道,但较低的比电容和相对较低的体积密度限制了它们在高能量需求的超级电容器电极方面的实际应用。为解决上述问题,关于具有高比表面积的多孔碳材料的研究逐渐活跃起来,特别是一些免活化的制备方法如共混聚合物裂解法、微乳液模板溶胶-凝胶聚合法及模板法等。然而,共聚混合物的制备、超临界干燥、模板的去除等使以上免活化制备方法较传统方法更为复杂。
用聚偏二氯乙烯(PVDC)作为前驱体制备多孔碳可实现脱氯-活化一步完成。PVDC基碳作为超级电容器电极材料的优势在于:(1)来源广、成本低;(2)PVDC高碳密度的长链构型可促进芳香环化,与小分子相比,其所需碳化能量低,制备多孔碳材料无需额外活化过程;(3)以PVDC为碳前驱体比以其他材料为前驱体制备的多孔碳材料具有较高的比电容,目前PVDC基碳电极的比电容可达400 F·g-1。然而, 高性能超级电容器的碳电极材料既要有高比表面积,又要有与电解液离子尺寸相适应的孔径,二者彼此制约。因此,目前研究的重点是在更微观层面上实现碳材料微观结构的调控与优化。
目前,超级电容器用PVDC基碳电极的制备方法可分为脱氯-活化多步法与脱氯-活法一步法。脱氯-活化多步法是将PVDC直接机械研磨或高温热解,接着在不同活化作用后得到多孔碳材料的方法。此法得到的多孔碳具有较高的比表面积,但制备过程复杂。模板法不需要额外活化作用,但仍需两步才可得到多孔结构,获得的多孔碳材料虽然具有比表面积大、孔体积大及分级孔径分布的优点,但比电容相对较低。PVDC结构特殊,在高温热解或机械研磨过程中加入强碱,可实现脱氯-活化一步完成,得到PVDC基多孔碳材料,该法工序简单,脱氯率较高,且不会破坏PVDC的固有结构。此外,PVDC连接在亚乙烯基上的氯元素活性高,与含N-/O-聚合物中的N-/O-相比更易离开基团,可在较低温度实现脱氯碳化,且脱氯后的空位对杂质原子较敏感,易实现掺杂。
本文分别从PVDC脱氯-活化多步碳化、脱氯-活化一步碳化及氮掺杂三方面综述了超级电容器用PVDC基碳电极的孔结构、比表面积及电化学性能方面的研究进展,并对超级电容器用PVDC基碳电极的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖国庆
勾黎敏
丁冬海
关键词:  聚偏二氯乙烯  超级电容器  碳电极  多孔碳  氮掺杂    
Abstract: Carbon electrode is the key material of super capacitor, which largely determines the performance of super capacitor. Carbon electrode develops towards high specific surface area, high bulk density, high porosity, high conductivity, high purity, high cost performance, and good electrolyte wettability. At present, it has been reported that diverse carbon materials including activated carbon fibers, carbon aerogels, carbon nanotubes and template carbons have been widely investigated as electrode materials for supercapacitors. However, the relatively low specific capacitance and bulk density of these carbon materials seriously block their practical applications in supercapacitor electrodes with high energy demand. To solve these problems, the research of porous carbon materials with high specific surface area has aroused increasing attention in recent years, especially the free-activation methods like blen-ding polymer pyrolysis, microemulsion-templated sol-gel polymerization and template method have received great concern. Yet the preparation of polymer blend, the time-consuming supercritical drying and the removal of the template have made the process even more complicated than conventional methods.
The dechlorination and activation can be accomplished in one step when poly(vinylidene dichloride) (PVDC) is taken as precursors for porous carbon preparation. The superiorities of polyvinyl chloride based carbon as electrode material for supercapacitors can be concluded as follow. Ⅰ. The abundant resource and low cost of PVDC. Ⅱ.Its long-chain configuration with an inherently high carbon density can greatly facilitate aromatic cyclization, lower energy input of carbonization of PVDC is needed compared with other small molecules, and no additional activation process is required. Ⅲ. The porous carbon materials prepared by using PVDC as carbon precursor present considerably higher specific capacitance than the ones prepared by other materials reported up to now, the specific capacitance of PVDC based carbon electrode can reach over 400 F/g. Significantly, carbon electrode materials of high performance supercapacitors not only require high specific surface area, but also need suitable pore size for the electrolyte, while these two factors are restricted by each other. Therefore, the focus of current research is to realize the regulation and optimization of microstructure of carbon materials at a more micro level.
The preparation methods of PVDC-based carbon electrode for supercapacitors can be mainly divided into dechlorination-activation multistep method and dechlorination-activation one-step method. For the former, PVDC is directly mechanically ground or pyrolyzed at a high temperature, and then a porous carbon material with high specific surface is obtained after various activation process. The porous carbon obtained by this method show high specific surface area, but the preparation process is relatively complicated. Additional activation process is not needed for template method, but it still needs two steps. Although the porous carbon materials prepared by template method exhibit many advantages including large specific surface area, large pore volume and hierarchical pore size distribution, its specific capacitance is relatively low which limits its application in supercapacitors. Thanks to the unique structure of PVDC, PVDC-based porous carbon material can be achieved through one-step dechlorination-activation only by adding strong alkali in the process of high temperature pyrolysis or mechanical grinding. This process of dechlorination is simple and efficient, and does not damage the intrinsic structure of PVDC. Besides, the chlorine elements in PVDC connected to vinylidene units are highly active, they can be eliminated with a much lower energy input compared to the N-/O- in N-/O- containing polymers. Thus, dechlorination and carbonization of PVDC can be occurred at a lower temperature. The vacancy after dechlorination is sensitive to heteroatoms and doping can be easily realized.
This article reviews the investigations on the porous structure, specific surface and electrochemical performance of PVDC-based carbon materials for supercapacitors from three aspects, including PVDC dechlorination-activation multistep carbonization, dechlorination-activation one-step carbonization and N-doping. And the future development of PVDC-based carbon electrode for supercapacitors is prospected.
Key words:  poly(vinylidene dichloride)    supercapacitor    carbon electrode    porous carbon    nitrogen-doping
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  O646  
  TM919  
基金资助: 国家自然科学基金(51572212;51502236;51772236);中国博士后科学基金(2016M602940XB);先进耐火材料国家重点实验室开放课题
作者简介:  男,1967年生,教授,博士研究生导师,主要从事耐火材料、陶瓷自蔓延高温合成研究 E-mail:xiaoguoqing@xauat.edu.cn; 丁冬海:通信作者,男,1983年生,副教授,硕士研究生导师,主要从事含碳耐火材料、雷达吸波材料研究 E-mail:dingdongxauat@163.com
引用本文:    
肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
XIAO Guoqing, GOU Limin, DING Donghai. A State of the art Review on PVDC based Carbon Electrode for Supercapacitors. Materials Reports, 2018, 32(19): 3309-3317.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.004  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3309
1 Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2012,43(18):797.
2 Du S H, Wang L Q, Fu X T, et al. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors[J].Bioresource Technology,2013,139(13):406.
3 Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937.
4 Xu B, Chen Y F, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J].Materials Chemistry & Physics,2010,124(1):504.
5 Jiang Q, Qu M Z, Zhang B L, et al. Progress of research on electrode materials for electrochemical supercapacitors[J].Journal of Inorganic Materials,2002,174(4):649(in Chinese).
江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,174(4):649.
6 Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: A review[J].International Journal of Hydrogen Energy,2009,34(11):4889.
7 Hulicovajurcakova D, Puziy A M, Poddubnaya O I, et al. Highly stable performance of supercapacitors from phosphorus-enriched carbons[J].Journal of the American Chemical Society,2009,131(14):5026.
8 Feng C C, Wu A M, Huang H. Recent progress of N-doped porous carbon materials with applications to supercapacitor electrde[J].Materials Review A: Review Papers,2016,30(1):143(in Chinese).
冯晨辰,吴爱民,黄昊.超级电容器电极用N-掺杂多孔碳材料的研究进展[J].材料导报:综述篇,2016,30(1):143.
9 Francois B, Elzbieta F.超级电容器:材料、系统及应用[M].北京:机械工业出版社,2014.
10 Xu B, Wu F, Chen S, et al. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs[J].Electrochimica Acta,2009,54(8):2185.
11 Frackowiak E. Carbon materials for supercapacitor application[J].Physical Chemistry Chemical Physics,2007,9(15):1774.
12 Lobato B, Suarez L, Guardia L, et al. Capacitance and surface of carbons in supercapacitors[J].Carbon,2017,122:434.
13 Xu B, Zhang H, Cao G P, et al. Carbon materials for supercapacitors[J].Process in Chemistry,2011(2):605(in Chinese).
徐斌,张浩,曹高萍,等.超级电容器炭电极材料的研究[J].化学进展,2011(2):605.
14 Yang J, Bao Y Z, Pan P Q. Preparation of hierarchical porous carbons from amphiphilic poly(vinylidene chloride-co-methyl acrylate)-b-poly(acrylic acid) copolymers by self-templating and one-step carbonization method[J].Microporous & Mesoporous Materials,2014,196:199.
15 Wu D G, Fu R W, Dresselhaus M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method[J].Carbon,2006,44(4):675.
16 Sun F, Gao J H, Liu X, et al. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials[J].Applied Surface Science,2016,387:857.
17 Xu B, Hou S H, Chu M, et al. An activation-free method for preparing microporous carbon by the pyrolysis of poly(vinylidene fluo-ride)[J].Carbon,2010,48(10):2812.
18 Kim D N, Buchholz D B, Casillas G, et al. Hierarchical design for fabricating cost-effective high performance supercapacitors[J].Advanced Functional Materials,2014,24(26):4186.
19 Robertson C, Mokaya R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J].Microporous & Mesoporous Materials,2013,179(17):151.
20 Zhang G X, Wang L, Hao Y C, et al. Unconventional carbon: Alkaline dehalogenation of Polymers yields N-doped carbon electrode for high-performance capacitive energy storage[J].Advanced Functional Materials,2016,26(19):3340.
21 Ferrero G A, Fuertes A B, Sevilla M. N-doped microporous carbon microspheres for high volumetric performance supercapacitors[J].Electrochimica Acta,2015,168:320.
22 González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: Technologies and materials[J].Renewable & Sustainable Energy Reviews,2016,58(2016):1189.
23 Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520.
24 Solodovnichenko V S, Kryazhev Y G, Arbuzov A B, et al. Polyvinyl chloride as precursor for low-temperature synthesis of carbon materials[J].Russian Chemical Bulletin,2016,65(11):2712.
25 Lin S K, March J. March’s advanced organic chemistry: Reactions, mechanisms, and structure, 5th Edition[J].Molecules,2001,6(12):1064.
26 Li X Q, Chang L, Zhao S L, et al. Research on carbon-based electrode materials for supercapacitors[J].Acta Physico-Chimica Sinica,2017,33(1):130(in Chinese).
李雪芹,常琳,赵慎龙,等.基于碳材料的超级电容器电极材料的研究[J].物理化学学报,2017,33(1):130.
27 Xie X Y, Zhang C, Yang Q H. The development of electrode mate-rials for supercapacitors[J].Chemical Industry & Engineering,2014,31(1):63(in Chinese).
谢小英,张辰,杨全红.超级电容器电极材料研究进展[J].化学工业与工程,2014,31(1):63.
28 Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J].Journal of Power Sources,2006,157(1):11.
29 Kim Y J, Masutzawa Y, Ozaki S, et al. PVDC-based carbon mate-rial by chemical activation and its application to nonaqueous EDLC[J].Journal of the Electrochemical Society,2004,151(6):E199.
30 Obreja V V N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review[J].Physica E: Low-dimensional Systems and Nanostructures,2008,40(7):2596.
31 Xu B, Wu F, Mu D B, et al. Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte[J].International Journal of Hydrogen Energy,2010,35(2):632.
32 Eliad L, Plollak L, Levy N, et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors[J].Applied Physics A,2006,82(4):607.
33 Cai J J, Lv X X, Xing Y L, et al. Carbon dioxide adsorption on poly(vinylidene chloride)-based carbons with ultrahigh microporosities prepared by facile carbonization[J].Materials Letters,2014,114(1):37.
34 Kryazhev Y G, Solodovinchenko V S, Antonicheva N V, et al. Evolution of the structures and sorption properties of dehydrochlorinated chloropolymers during their thermal conversions[J].Protection of Metals & Physical Chemistry of Surfaces,2009,45(4):398.
35 Cheng L X, Zhang L, Chen X Y, et al. Efficient conversion of waste polyvinyl chloride into nanoporous carbon incorporated with MnOx exhibiting superior electrochemical performance for supercapacitor application[J].Electrochimica Acta,2015,176:197.
36 Qiao W M, Song Y, Yoon S H, et al. Carbonization of waste PVC to develop porous carbon material without further activation[J].Waste Management,2006,26(6):592.
37 Solodovnichenko V S, Polyboyarov V A, Zhdanok A A, et al. Synthesis of carbon materials by the short-term mechanochemical activation of polyvinyl chloride[J].Procedia Engineering,2016,152:747.
38 Endo M, Kim Y J, Kakeda T, et al. Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte[J].Folia Primatologica,2001,148(10):A1135.
39 Zheng D F, Jia M Q, Xu B, et al. The simple preparation of a hierarchical porous carbon with high surface area for high perfor-mance supercapacitors[J].Materials New Carbon 2013,28(2):151(in Chinese).
郑冬芳,贾梦秋,徐斌,等.高性能超级电容器用高比表面积、层次孔结构炭材料的简便制备[J].新型炭材料,2013,28(2):151.
40 Kim J I, Park S. A study of ion charge transfer on electrochemical behaviors of poly(vinylidene fluoride)-derived carbon electrodes[J].Journal of Analytical and Applied Pyrolysis,2012,98(10):22.
41 Xu B, Wu F, Chen S, et al. A simple method for preparing porous carbon by PVDC pyrolysis[J].Colloids & Surfaces A: Physicochemical & Engineering Aspects,2008,316(1):85.
42 Zhang G X, Wang J D, Qin B C, et al. Room-temperature rapid synthesis of metal-free doped carbon materials[J].Carbon,2017,115:28.
43 Zhang G X, Luo H X, Li H Y, et al. ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst[J].Nano Energy,2016,26:241.
44 Hu J C, Zhang G X, Li H Y, et al. Thin sandwich graphene oxide@N-doped carbon composites for high-performance supercapacitors[J].RSC Advances,2017,7(36):22071.
45 Zhang C, Zhang G X, Li H Y, et al. Interfacial dehalogenation-enabled hollow N-doped carbon network as bifunctional catalysts for rechargeable Zn-air battery[J].Electrochimica Acta,2017,247:1044.
46 Xu B, Yue S F, Qiao N, et al. Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors[J].Materials Letters,2014,131(8):49.
47 Kim K S, Park S J. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance[J].Electrochimica Acta,2011,56(27):10130.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[5] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[6] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[7] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[10] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[11] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[12] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[13] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[14] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[15] 傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed