Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 9-15
  材料综述 |
傅深娜1,2, 马利1, 甘孟瑜1, 汪仕勇1
1 重庆大学化学化工学院, 重庆 400044;
2 重庆工业职业技术学院化学与制药工程学院, 重庆 401120
Recent Advances in Preparation of Three-dimensional Graphene and Relevant Composites and Their Applications in Supercapacitors
FU Shenna1,2, MA Li1, GAN Mengyu1, WANG Shiyong1
1 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044;
2 Institute of Environmental Catalysis, Chongqing Industry Polytechnic College, Chongqing 401120
下载:  全 文 ( PDF ) ( 1434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维(3D)石墨烯及其复合材料具有柔韧性好、比表面积大、功率密度高、力学性能稳定以及离子传输迅速等优良性能,成为材料科学领域备受关注的材料。概述了三维石墨烯材料的基本性质和性能,并对其多元复合材料的制备方法以及在超级电容器储能材料方面的应用研究进展进行了评述。三维(3D)石墨烯常用的制备方法有自组装法、模板导向法和3D打印法等,通过对制备方法进行改进,可以有效调控三维材料的多孔结构、孔径、柔韧性和电子传递速度等性能。三维(3D)石墨烯与过渡金属化合物及导电聚合物复合而成的多元复合物在超级电容器电极材料方面表现出广阔的应用前景。
E-mail Alert
关键词:  三维石墨烯  过渡金属  导电聚合物  超级电容器    
Abstract: Three dimensional (3D) graphene and its composite have recently attracted great interests in the field of materials science because of its superior properties such as good flexibility, large specific surface area, high power density, stable mechanical properties, fast electron transport and so on. In this paper, the basic properties of the three dimensional graphene materials are summarized. The preparation methods of the composite materials and their applications in supercapacitor are reviewed. The widely used preparation methods include self-assembly method, template method and 3D printing technique and so on. The performances of porous structure, pore size, flexibility and electron transport rate can be optimized by improving the preparation methods. The composite composed of three dimensional (3D) graphene,transition metal compounds and conductive polymer showed a remarkable application potential as supercapacitor electrode materials.
Key words:  three dimensional graphene    transition metal    conducting polymer    supercapacitor
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB333  
基金资助: 重庆市教委项目(KJ1503106)
作者简介:  傅深娜:女,1983年生,博士研究生,讲师,主要从事石墨烯超级电容器电极材料制备及应用研究 马利:男,1958年生,教授,博士研究生导师,主要从事石墨烯基复合材料应用研究
傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
FU Shenna, MA Li, GAN Mengyu, WANG Shiyong. Recent Advances in Preparation of Three-dimensional Graphene and Relevant Composites and Their Applications in Supercapacitors. Materials Reports, 2017, 31(5): 9-15.
链接本文:  或
1 Li F, Jiang X, Zhao J J, et al. Graphene oxide: A promising nanomaterial for energy and environmenttal applications[J]. Nano Energy,2015,16:488.
2 Zhu T, Wang J, Ho G W. Self-supported yolk-shell nano colloids towards high capacitance and excellent cycling performance[J]. Nano Energy,2015,18:273.
3 Conway B, Birss V, Wojtowicz J. The role and utilization of pseu-docapacitance for energy storage by supercapacitors[J]. J Power Sources,1997,66(1):1.
4 Zhou G J, Ye Z K, Shi W W, et al. Applications of three dimensio-nal graphene and its composite materials[J].Prog Chem,2014,26(6):950(in Chinese).
周国珺,叶志凯,石微微. 三维(3D) 石墨烯及其复合材料的应用[J]. 化学进展,2014,26(6):950.
5 Huang C C, Li C, Shi G Q.Graphene based catalysts[J]. Energy Environ Sci,2012,5:8848.
6 Huang X D, Qian K, Yang J, et al. Functional nanoporous graphene foams with controlled pore sizes[J]. Adv Mater,2012,24:4419.
7 Zhu X Y, Sakineh C, Xia Y D, et al. Preparation of 3D graphene-based architectures and their applications in supercapacitors[J]. Mater Int,2015,25:554.
8 Li Z S, Ye L T, Lei F L, et al. Enhanced electro-photo synergistic catalysis of Pt (Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation[J]. Electrochim Acta,2016,188:450.
9 Hai Z Y, Gao L B, Zhang Q, et al. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors[J]. Appl Surf Sci,2016,361:57.
10 Capasso A, Castillo A E D R, Sun H, et al. Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach[J]. Solid State Commun,2015,224:53.
11 Ionita M, Crica L E, Vasile E, et al. Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films[J]. Polymer,2016,92(1):1.
12 Li X Y, Tan X C, Yan J, et al. A sensitive electrochem iluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru(bpy) doped silica nanocomposite modified electrode[J]. Electrochim Acta,2016,187(1):433.
13 Kim J H, Chang W S, Kim D, et al. 3D printing of reduced graphene oxide nanowires[J]. Adv Mater,2015,27:157.
14 Zhu C, Han T Y J, et al. Highly compressible 3D periodic graphene aerogel micro lattices[J]. Nat Commun,2015,6:8.
15 Lee K G, Jeong J M, Lee S J, et al. Sono chemical-assisted synthesis of 3D graphene/nanoparticle foams and their application in supercapacitor[J]. Ultrason Sonochem,2015,22:422.
16 Xu Y X, Sheng K X, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4:4324.
17 Lee S H, Kim H W, Hwang J O,et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angew Chem,2010,122:10282.
18 Zhang N S, Fu C P, Liu D, et al. Three dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor[J]. Electrochim Acta,2016,210:804.
19 Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano,2010,4:7358.
20 Xie R H, Ren P G, Hui J, et al. Preparation and properties of graphene oxide regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior[J]. Carbohydr Polym,2016,138(15):222.
21 Jiang X, Ma Y, Li J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage[J]. J Phys Chem C,2010,114:22462.
22 Sheng K X, Xu Y X, Li C, et al. High performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater,2011,26:9.
23 Xu Y, Lin Z, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nat Commun,2014,5:4554.
24 Luo J W, Zhong J W, Zou Y B, et al. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes[J]. J Power Sources,2016,319:73.
25 Zhang C C, Wang L G, Zhao Y Z, et al. Self-asse-mbly synthesis of graphene oxide double shell hollow spheres decorated with Mn3O4 for electrochemical supercapacitors[J]. Carbon,2016,107:100.
26 Chen C M, Yang Q H, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv Mater,2009,21:1.
27 Shao J J, Wu S D, Zhang S B, et al. Graphene oxide hydrogel at so-lid/liquid interface[J]. Chem Commun,2011,47(20):5771.
28 Chen Z P, Ren W C, Gao L B, et al. Three dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nat Mater,2011,10:424.
29 Wang J, Chao D L, Liu J L, et al. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-perfor-mance electrochemical energy sto-rage[J]. Nano Energy,2014,7(7):151.
30 Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angew Chem,2014,53(19):4822.
31 Ruan Y Y, Jiang J J, Wan H Z, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. J Power Sources,2016,301(1):122.
32 Xiong C Y, Li T H, Dang A L, et al. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode[J].J Power Sources,2016,306(2):602.
33 Yang S, Feng X, Wang L, et al. Graphene-based nano sheets with a sandwich structure[J]. Angew Chem,2010,122(28):4905.
34 Wang S Y, Ma L, Gan M Y, et al. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors[J]. J Power Sources,2015,299(12):347.
35 Chen C M, Zhang Q, Huang C H, et al. Macroporous ‘bubble’ graphene film via template dire-cted ordered-assembly for high rate supercapacitors[J]. Chem Commun,2012,48(57):7149.
36 He Z M, Liu J, Qiao Y, et al. Architecture engineering of hierarchically porous chitosan/vacuu-m-stripped graphene scaffold as bioanode for high performance microbial fuel cell[J]. Nano Lett,2012,12(9):4738.
37 Vinod S, Tiwary C S, Autretol P A D, et al. Low-density three-dimensional foam using self-reinfo-rced hybrid two-dimensional atomic layers[J]. Nat Commun,2014,5:4541.
38 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332(6037):1537.
39 Wang H, Zhang D, Yan T, et al. Three dimen-sional macro-porous graphene architectures as high performance electrodes for capacitive deionization [J]. J Mater Chem A,2013,1(38):11778.
40 Chang Z L, Gao Z Y, Liu X, et al. Hierarchically porous carbons with graphene incorporation for efficient supercapacitors[J]. Electrochim Acta,2016,213:382.
41 Xie Y H, Sheng X X, Xie D L, et al.Fabricating graphene hydrogels with controllable pore structure via one-step chemical reduction process [J]. Carbon,2016,109:673.
42 Liu D, Fu C P, Zhang N S, et al.Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors[J].Electrochim Acta,2016,213:291.
43 Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7:4042.
44 An H R, Li Y, Long P, et al.Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors[J]. J Power Sources,2016,312:146.
45 Hwang J Y,El-Kady M F,et al. Direct preparation and processing of graphene/RuO2 nano-composite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57.
46 Li Z J, Zhang W Y, Sun C Y, et al. Controlled synthesis of Ni-(OH)2/graphene composites and their transformation to NiO/graphene for energy storage[J]. Electrochim Acta,2016,212:390.
47 Nguyen V H, Shim J J. The 3D Co3O4/graphene/nickel foam electrode with enhanced Electrochemical performance for supercapacitors[J]. Mater Lett,2015,139:377.
48 Xu J, Sun H J, Li Z L, et al. Synthesis and elec-trochemical properties of graphene/V2O5 xerogels nanocomposites as supercapacitor electrodes[J]. Solid State Ionics,2014,262:234.
49 Huang Y S, Wu D Q, Wang J Z, et al. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage[J]. Small,2014,10(11):2226.
50 Gopalakrishnan K, Sultan S, Govindaraj A, et al. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2[J]. Nano Energy,2015,12:52.
51 Li X F, Shen J F, Li N, et al. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications[J]. J Power Sources,2015,282(15):194.
52 Wang H L, Casalongue H S, Liang Y Y, et al.Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. J Am Chem Soc,2010,132:7472.
53 Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020.
54 Hassan M, Reddy K R, Haque E, et al. Hierarchical assembly of graphene/polyaniline nanos-tructures to synthesize free standing supercapacitor electrode[J]. Compos Sci Technol,2014,98:1.
55 Tang W, Li P, Yuan C Q, et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline compo-site for supercapacitor application[J]. Synth Met,2015,202:140.
56 Ma C L, Peng L, Feng Y F, et al. Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application [J]. Synthe Met,2016,220:227.
57 Shu K W, Wang C Y, Zhao C, et al. A free standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance[J]. Electrochim Acta,2016,212:561.
58 Lin H L, Huang Q, Wang J Z, et al. Self assembled graphene/ polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors[J]. Electrochim Acta,2016,191:444.
59 Yu L, Gan M Y, Ma L, et al. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical perfor-mance[J]. Synthe Met,2014,198:167.
60 Sha C H, Lu B,Mao H Y, et al. 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors[J].Carbon,2016,99:26.
61 Gao Z, Yang W L, Wang J, et al. Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties[J]. Nano Energy,2015,13:306.
62 Chen Y P, Liu B, Liu Q, et al. Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO4 nanowire arrays with chemically integrated conductive coating[J]. Electrochim Acta,2015,178:429.
63 Nguyen V H, Lamiel C, Shim J J. Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapacitors[J]. Mater Lett,2016,170:105.
[1] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[2] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[3] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[4] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[5] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[6] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[7] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[8] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[9] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[10] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[11] 徐志勇, 冯东, 赵文波, 柴牧原, 陈玲, 陈媛. 均匀沉淀法可控制备氯化镉氨配合物[J]. 材料导报, 2018, 32(24): 4240-4247.
[12] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[13] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[14] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[15] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Full text