Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 9-15    https://doi.org/10.11896/j.issn.1005-023X.2017.05.002
  材料综述 |
三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*
傅深娜1,2, 马利1, 甘孟瑜1, 汪仕勇1
1 重庆大学化学化工学院, 重庆 400044;
2 重庆工业职业技术学院化学与制药工程学院, 重庆 401120
Recent Advances in Preparation of Three-dimensional Graphene and Relevant Composites and Their Applications in Supercapacitors
FU Shenna1,2, MA Li1, GAN Mengyu1, WANG Shiyong1
1 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044;
2 Institute of Environmental Catalysis, Chongqing Industry Polytechnic College, Chongqing 401120
下载:  全 文 ( PDF ) ( 1434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维(3D)石墨烯及其复合材料具有柔韧性好、比表面积大、功率密度高、力学性能稳定以及离子传输迅速等优良性能,成为材料科学领域备受关注的材料。概述了三维石墨烯材料的基本性质和性能,并对其多元复合材料的制备方法以及在超级电容器储能材料方面的应用研究进展进行了评述。三维(3D)石墨烯常用的制备方法有自组装法、模板导向法和3D打印法等,通过对制备方法进行改进,可以有效调控三维材料的多孔结构、孔径、柔韧性和电子传递速度等性能。三维(3D)石墨烯与过渡金属化合物及导电聚合物复合而成的多元复合物在超级电容器电极材料方面表现出广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅深娜
马利
甘孟瑜
汪仕勇
关键词:  三维石墨烯  过渡金属  导电聚合物  超级电容器    
Abstract: Three dimensional (3D) graphene and its composite have recently attracted great interests in the field of materials science because of its superior properties such as good flexibility, large specific surface area, high power density, stable mechanical properties, fast electron transport and so on. In this paper, the basic properties of the three dimensional graphene materials are summarized. The preparation methods of the composite materials and their applications in supercapacitor are reviewed. The widely used preparation methods include self-assembly method, template method and 3D printing technique and so on. The performances of porous structure, pore size, flexibility and electron transport rate can be optimized by improving the preparation methods. The composite composed of three dimensional (3D) graphene,transition metal compounds and conductive polymer showed a remarkable application potential as supercapacitor electrode materials.
Key words:  three dimensional graphene    transition metal    conducting polymer    supercapacitor
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB333  
基金资助: 重庆市教委项目(KJ1503106)
作者简介:  傅深娜:女,1983年生,博士研究生,讲师,主要从事石墨烯超级电容器电极材料制备及应用研究 E-mail:fsnhhk@163.com 马利:男,1958年生,教授,博士研究生导师,主要从事石墨烯基复合材料应用研究 E-mail:mlsys607@126.com
引用本文:    
傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
FU Shenna, MA Li, GAN Mengyu, WANG Shiyong. Recent Advances in Preparation of Three-dimensional Graphene and Relevant Composites and Their Applications in Supercapacitors. Materials Reports, 2017, 31(5): 9-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.002  或          https://www.mater-rep.com/CN/Y2017/V31/I5/9
1 Li F, Jiang X, Zhao J J, et al. Graphene oxide: A promising nanomaterial for energy and environmenttal applications[J]. Nano Energy,2015,16:488.
2 Zhu T, Wang J, Ho G W. Self-supported yolk-shell nano colloids towards high capacitance and excellent cycling performance[J]. Nano Energy,2015,18:273.
3 Conway B, Birss V, Wojtowicz J. The role and utilization of pseu-docapacitance for energy storage by supercapacitors[J]. J Power Sources,1997,66(1):1.
4 Zhou G J, Ye Z K, Shi W W, et al. Applications of three dimensio-nal graphene and its composite materials[J].Prog Chem,2014,26(6):950(in Chinese).
周国珺,叶志凯,石微微. 三维(3D) 石墨烯及其复合材料的应用[J]. 化学进展,2014,26(6):950.
5 Huang C C, Li C, Shi G Q.Graphene based catalysts[J]. Energy Environ Sci,2012,5:8848.
6 Huang X D, Qian K, Yang J, et al. Functional nanoporous graphene foams with controlled pore sizes[J]. Adv Mater,2012,24:4419.
7 Zhu X Y, Sakineh C, Xia Y D, et al. Preparation of 3D graphene-based architectures and their applications in supercapacitors[J]. Mater Int,2015,25:554.
8 Li Z S, Ye L T, Lei F L, et al. Enhanced electro-photo synergistic catalysis of Pt (Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation[J]. Electrochim Acta,2016,188:450.
9 Hai Z Y, Gao L B, Zhang Q, et al. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors[J]. Appl Surf Sci,2016,361:57.
10 Capasso A, Castillo A E D R, Sun H, et al. Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach[J]. Solid State Commun,2015,224:53.
11 Ionita M, Crica L E, Vasile E, et al. Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films[J]. Polymer,2016,92(1):1.
12 Li X Y, Tan X C, Yan J, et al. A sensitive electrochem iluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru(bpy) doped silica nanocomposite modified electrode[J]. Electrochim Acta,2016,187(1):433.
13 Kim J H, Chang W S, Kim D, et al. 3D printing of reduced graphene oxide nanowires[J]. Adv Mater,2015,27:157.
14 Zhu C, Han T Y J, et al. Highly compressible 3D periodic graphene aerogel micro lattices[J]. Nat Commun,2015,6:8.
15 Lee K G, Jeong J M, Lee S J, et al. Sono chemical-assisted synthesis of 3D graphene/nanoparticle foams and their application in supercapacitor[J]. Ultrason Sonochem,2015,22:422.
16 Xu Y X, Sheng K X, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4:4324.
17 Lee S H, Kim H W, Hwang J O,et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angew Chem,2010,122:10282.
18 Zhang N S, Fu C P, Liu D, et al. Three dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor[J]. Electrochim Acta,2016,210:804.
19 Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano,2010,4:7358.
20 Xie R H, Ren P G, Hui J, et al. Preparation and properties of graphene oxide regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior[J]. Carbohydr Polym,2016,138(15):222.
21 Jiang X, Ma Y, Li J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage[J]. J Phys Chem C,2010,114:22462.
22 Sheng K X, Xu Y X, Li C, et al. High performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater,2011,26:9.
23 Xu Y, Lin Z, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nat Commun,2014,5:4554.
24 Luo J W, Zhong J W, Zou Y B, et al. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes[J]. J Power Sources,2016,319:73.
25 Zhang C C, Wang L G, Zhao Y Z, et al. Self-asse-mbly synthesis of graphene oxide double shell hollow spheres decorated with Mn3O4 for electrochemical supercapacitors[J]. Carbon,2016,107:100.
26 Chen C M, Yang Q H, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv Mater,2009,21:1.
27 Shao J J, Wu S D, Zhang S B, et al. Graphene oxide hydrogel at so-lid/liquid interface[J]. Chem Commun,2011,47(20):5771.
28 Chen Z P, Ren W C, Gao L B, et al. Three dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nat Mater,2011,10:424.
29 Wang J, Chao D L, Liu J L, et al. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-perfor-mance electrochemical energy sto-rage[J]. Nano Energy,2014,7(7):151.
30 Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angew Chem,2014,53(19):4822.
31 Ruan Y Y, Jiang J J, Wan H Z, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. J Power Sources,2016,301(1):122.
32 Xiong C Y, Li T H, Dang A L, et al. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode[J].J Power Sources,2016,306(2):602.
33 Yang S, Feng X, Wang L, et al. Graphene-based nano sheets with a sandwich structure[J]. Angew Chem,2010,122(28):4905.
34 Wang S Y, Ma L, Gan M Y, et al. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors[J]. J Power Sources,2015,299(12):347.
35 Chen C M, Zhang Q, Huang C H, et al. Macroporous ‘bubble’ graphene film via template dire-cted ordered-assembly for high rate supercapacitors[J]. Chem Commun,2012,48(57):7149.
36 He Z M, Liu J, Qiao Y, et al. Architecture engineering of hierarchically porous chitosan/vacuu-m-stripped graphene scaffold as bioanode for high performance microbial fuel cell[J]. Nano Lett,2012,12(9):4738.
37 Vinod S, Tiwary C S, Autretol P A D, et al. Low-density three-dimensional foam using self-reinfo-rced hybrid two-dimensional atomic layers[J]. Nat Commun,2014,5:4541.
38 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332(6037):1537.
39 Wang H, Zhang D, Yan T, et al. Three dimen-sional macro-porous graphene architectures as high performance electrodes for capacitive deionization [J]. J Mater Chem A,2013,1(38):11778.
40 Chang Z L, Gao Z Y, Liu X, et al. Hierarchically porous carbons with graphene incorporation for efficient supercapacitors[J]. Electrochim Acta,2016,213:382.
41 Xie Y H, Sheng X X, Xie D L, et al.Fabricating graphene hydrogels with controllable pore structure via one-step chemical reduction process [J]. Carbon,2016,109:673.
42 Liu D, Fu C P, Zhang N S, et al.Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors[J].Electrochim Acta,2016,213:291.
43 Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7:4042.
44 An H R, Li Y, Long P, et al.Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors[J]. J Power Sources,2016,312:146.
45 Hwang J Y,El-Kady M F,et al. Direct preparation and processing of graphene/RuO2 nano-composite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57.
46 Li Z J, Zhang W Y, Sun C Y, et al. Controlled synthesis of Ni-(OH)2/graphene composites and their transformation to NiO/graphene for energy storage[J]. Electrochim Acta,2016,212:390.
47 Nguyen V H, Shim J J. The 3D Co3O4/graphene/nickel foam electrode with enhanced Electrochemical performance for supercapacitors[J]. Mater Lett,2015,139:377.
48 Xu J, Sun H J, Li Z L, et al. Synthesis and elec-trochemical properties of graphene/V2O5 xerogels nanocomposites as supercapacitor electrodes[J]. Solid State Ionics,2014,262:234.
49 Huang Y S, Wu D Q, Wang J Z, et al. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage[J]. Small,2014,10(11):2226.
50 Gopalakrishnan K, Sultan S, Govindaraj A, et al. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2[J]. Nano Energy,2015,12:52.
51 Li X F, Shen J F, Li N, et al. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications[J]. J Power Sources,2015,282(15):194.
52 Wang H L, Casalongue H S, Liang Y Y, et al.Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. J Am Chem Soc,2010,132:7472.
53 Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020.
54 Hassan M, Reddy K R, Haque E, et al. Hierarchical assembly of graphene/polyaniline nanos-tructures to synthesize free standing supercapacitor electrode[J]. Compos Sci Technol,2014,98:1.
55 Tang W, Li P, Yuan C Q, et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline compo-site for supercapacitor application[J]. Synth Met,2015,202:140.
56 Ma C L, Peng L, Feng Y F, et al. Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application [J]. Synthe Met,2016,220:227.
57 Shu K W, Wang C Y, Zhao C, et al. A free standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance[J]. Electrochim Acta,2016,212:561.
58 Lin H L, Huang Q, Wang J Z, et al. Self assembled graphene/ polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors[J]. Electrochim Acta,2016,191:444.
59 Yu L, Gan M Y, Ma L, et al. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical perfor-mance[J]. Synthe Met,2014,198:167.
60 Sha C H, Lu B,Mao H Y, et al. 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors[J].Carbon,2016,99:26.
61 Gao Z, Yang W L, Wang J, et al. Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties[J]. Nano Energy,2015,13:306.
62 Chen Y P, Liu B, Liu Q, et al. Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO4 nanowire arrays with chemically integrated conductive coating[J]. Electrochim Acta,2015,178:429.
63 Nguyen V H, Lamiel C, Shim J J. Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapacitors[J]. Mater Lett,2016,170:105.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[8] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[9] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[10] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[11] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[12] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[13] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[14] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[15] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed