Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23050078-9    https://doi.org/10.11896/cldb.23050078
  无机非金属及其复合材料 |
具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠
陈俊林1, 常春1,2,*
1 渤海大学化学与材料工程学院,辽宁 锦州 121013
2 大连大学环境与化学工程学院,辽宁 大连 116622
3D Flower-ball-like Bismuth Molybdate Photocatalytic Degradation Diclofenac Sodium Under Simulate Visible-light
CHEN Junlin1, CHANG Chun1,2,*
1 College of Chemical and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
2 College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
下载:  全 文 ( PDF ) ( 5817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼酸铋(Bi2MoO6,BMO)作为铋基光催化剂中一种良好的可见光响应性光催化剂,因其无毒、低成本、丰富的形貌以及优异的光学和化学性能引起了人们的广泛关注。BMO的光催化性能受到形貌和结构的强烈影响。到目前为止,在不同的pH、温度、溶剂、反应时间和表面活性剂条件下,采用不同的方法合成不同尺寸和形貌的BMO,包括零维、一维、二维和三维结构。其中,三维结构的BMO提供了良好的光捕获、短的光生载流子扩散路径和丰富的活性位点,对污染物有更高的光降解活性。本工作采用简单的溶剂热反应,制备了不同时间序列的三维花球状结构的Bi2MoO6。实验结果表明,BMO-24(溶剂热时间为24 h)表现出良好的载流子迁移率,具有最好的光催化效率。在模拟太阳光照射300 min后,其可以降解80%的双氯芬酸钠(DCF)。此外,分析了Bi2MoO6的物相组成、微观形貌、光学性质和电化学性能等。结果表明,溶剂热时间的改变对Bi2MoO6的表面形貌、孔隙结构、活性位点和光催化性能都有重要影响。最后,进一步探究反应机理发现,·O2-和h+自由基是BMO-24降解DCF的主要活性物种,在降解反应中起决定性作用。经过四次循环,Bi2MoO6仍具有优异的稳定性能。这项工作为光催化剂高性能光驱动降解水中污染物提供了更合理的设计和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊林
常春
关键词:  钼酸铋  双氯芬酸钠(DCF)  光催化  三维花球状  溶剂热法    
Abstract: Bismuth molybdate (Bi2MoO6, BMO), as a good visible light responsive photocatalyst in bismuth based photocatalysts, has attracted widespread attention due to its non-toxic, low-cost, rich morphology, and excellent optical and chemical properties. Notably, the photocatalytic performance of bismuth molybdate is strongly influenced by its morphology and structure. Up to now, researchers have used different methods to synthesize bismuth molybdate under different pH, temperature, solvent, reaction time and surfactant conditions, in order to obtain various sizes and morphology of bismuth molybdate, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional structures. Among them, the three-dimensional structure of BMO possesses better photodegradation activity for pollutants, as they provide good light capture, short photocarriers diffusion path route and rich active site. Herein, our study, here, use a simple solvothermal reaction to synthesize different time series of Bi2MoO6. Firstly, the experimental results show that BMO-24 (solvothermal time of 24 h) exhibits good carrier mobility, which possesses the best visible light driven photocatalytic efficiency. And after visible-light illumination for 300 min, 80% of diclofenac sodium (DCF) had been degraded. Furthermore, we analyze the phase composition, microstructure morphology, optical properties and electrochemical performance of Bi2MoO6. The results show that the change of solvothermal time has an important effect on the surface morphology, pore structure, active site and photocatalytic performance of Bi2MoO6. Finally, we conducted free radical capture experiments in order to further determine the involvement of active radical. On this basis, we found that ·O2- and h+ radicals are the main active species, playing a decisive role in the degradation react. In addition, after four cycles, Bi2MoO6 still exhibits excellent stability performance. This work provides a more reasonable design and guidance for the high-performance photocatalytic degradation of pollutants in water using photocatalysts.
Key words:  bismuth molybdate    diciofenac sodium (DCF)    photocatalysis    3D flower-ball-like    solvothermal method
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  O643  
基金资助: 兴辽英才计划青年拔尖人才项目(XLYC1907173);辽宁省教育厅高等学校基本科研项目(LJKMZ20221835)
通讯作者:  * 常春,大连大学环境与化学工程学院教授、硕士研究生导师。2006年沈阳师范大学环境科学专业本科毕业,2010年南开大学环境科学专业硕士毕业,2013年南开大学环境科学专业博士毕业。目前主要从事光(电)催化等方面的研究工作。发表论文50余篇,包括Applied Catalysis B: Environmental、 Chemical Engineering Journal等。changchun@dlu.edu.cn   
作者简介:  陈俊林,2020年7月于渤海大学获理学硕士学位。现为渤海大学化学与材料工程学院硕士研究生,在常春教授的指导下进行研究。目前主要研究领域为光催化在环境领域的应用。
引用本文:    
陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
CHEN Junlin, CHANG Chun. 3D Flower-ball-like Bismuth Molybdate Photocatalytic Degradation Diclofenac Sodium Under Simulate Visible-light. Materials Reports, 2024, 38(20): 23050078-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050078  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23050078
1 Jiménez-Salcedo M, Monge M, Tena M T, Journal of Environmental Chemical Engineering, 2021, 95, 105827.
2 Huang X, Mu W, Chang C. Environmental Science and Pollution Research, DOI:10.1007/s11356-023-26003-7.
3 Araujo L A, Bezerra C O, Cusioli L F, et al. Journal of Environmental Chemical Engineering, 2021, 96, 106629.
4 Liu F, Liang J, Chen L, et al. Journal of Molecular Liquids, 2019, 275, 807.
5 Liu D, Wang J Q, Zhou J, et al. Chemical Engineering Journal, 2019, 369, 968.
6 Ma N, Zhang N, Gao L, et al. Water, 2020, 12, 2902.
7 Yoo S H, Kang J K, Lee S C, et al. Journal of Environmental Chemical Engineering, 2021, 96, 106573.
8 Li S H, Gan Y Q, Shah S J, et al. Chemical Engineering Journal, 2021, 426, 131440.
9 Zhuang S, Liu Y, Wang J. Environmental Pollution, 2019, 253, 616.
10 Ye X X, Li Y, Lin H T, et al. Journal of Polymers and the Environment, 2021, 2910, 3401.
11 Bhadra B N, Seo P W, Jhung S H. Chemical Engineering Journal, 2016, 301, 27.
12 Zhang Y, Yin Z, Dai C, et al. Journal of Colloid and Interface Science, 2016, 481, 210.
13 Liang X X, Omer A M, Hu Z H, et al. Chemosphere, 2019, 217, 270.
14 Zhuang S T, Cheng R, Wang J L. Chemical Engineering Journal, 2019, 359, 354.
15 Cai M, Li R, Xie Z, et al. Applied Catalysis B: Environmental, 2019, 259, 118033.
16 Gao G, Shen J, Chu W, et al. Separation and Purification Technology, 2017, 173, 55.
17 Alharbi S K, Ansari A J, Nghiem L D, et al. Process Safety and Environmental Protection, 2022, 157, 106.
18 Li X, Huang S, Xu H, et al. Chinese Chemical Letters, 2022, 333, 1321.
19 Vogna D, Marotta R, Napolitano A, et al. Water Research, 2004, 382, 414.
20 Fujishima A, Honda K. Nature, 1972, 2385358, 37.
21 Zargazi M, Entezari M H. Ultrasonics Sonochemistry, 2020, 62, 104867.
22 Wang J, Dong M, Zhang Q, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(5), 827(in Chinese)
王静羚, 董曼茹, 张起程, 等, 无机化学学报, 2020, 36(5), 827.
23 Wang J, Zhao C, Yuan S, et al. Journal of Colloid and Interface Science, 2023, 638, 427.
24 Xie Y, Shang X, Liu D, et al. Applied Catalysis B: Environmental, 2019, 259, 118087.
25 Li B, Liu S, Lai C, et al. Applied Catalysis B: Environmental, 2020, 266, 118650.
26 Li S, Wang C, Cai M, et al. Journal of Colloid and Interface Science, 2022, 624, 219.
27 Tan L, Yuan B, Lou Y, et al. Journal of Alloys and Compounds, 2023, 945, 169233.
28 Pan J, Mo C, Xu X, et al. Applied Chemical Industry, 2022, 51(4), 923(in Chinese)
潘杰, 莫创荣, 许雪棠, 等, 应用化工, 2022, 51(4), 923.
29 Zhao Y F, Mao Q Y, Zhai X Y, et al. Progress in Chemisty, 2021, 33(8), 1331(in Chinese)
赵依凡, 毛琦云, 翟晓雅, 等, 化学进展, 2021, 33(8), 1331.
30 Xie Y Y, Shang X T, Liu D, et al. Applied Catalysis B:Environmental, 2019, 259, 118087.
31 Zhang Z, Zou C T, Yang S J. Progress in Chemistry, 2020, 32, 1427(in Chinese).
张志, 邹晨涛, 杨水金, 等. 化学进展, 2020, 32, 1427.
32 Li H, Li K, Wang H. Materials Chemistry and Physics, 2009, 1161, 134.
33 Kumar R, Sudhaik A, Raizada P, et al. Journal of Environmental Chemical Engineering, 2020, 85, 104483.
34 Cheng L, Liu L, Wang D, et al. Journal of CO2 Utilization, 2019, 29, 196.
35 Shimodaira Y, Kato H, Kobayashi H, et al. The Journal of Physical Chemistry B, 2006, 11036, 17790.
36 Zhou L, Wang W, Zhang L. Journal of Molecular Catalysis A: Chemical, 2007, 2681-2, 195.
37 Stelo F, Kublik N, Ullah S, et al. Journal of Alloys and Compounds, 2020, 829, 154591.
38 Zhang L, Li Y, Li Q, et al. Chemical Engineering Journal, 2021, 419, 129484.
39 Hassan J Z, Raza A, Qumar U, et al. Sustainable Materials and Technologies, 2022, 33, e00478.
40 Abazari R, Mahjoub A R, Shariati J, et al. Journal of Cleaner Production, 2019, 221, 582.
41 Zhang G X, Xu H R, Hu J M, Advanced Powder Technology, 2021, 3211, 4384.
42 Zhang Y, Zhao Y, Xiong Z, et al. Journal of Colloid and Interface Science, 2022, 607, 1864.
43 Yang G, Liang Y J, Li K, et al. Journal of Alloys and Compounds, 2020, 844, 156231.
44 Shukla B K, Rawat S, Gautam M K, et al. Molecules, 2022, 277, 2309.
45 Wen X, Jiang X, Jin T, et al. Energy & Fuels, 2022, 3619, 11485.
46 Umapathy V, Manikandan A, Arul Antony S, et al. Transactions of Nonferrous Metals Society of China, 2015, 2510, 3271.
47 Beale A M, Le M T, Hoste S, et al. Solid State Sciences, 2005, 710, 1141.
48 Subhiksha V, Kokilavani S, Sudheer K S, Chemosphere, 2022, 290, 133228.
49 Zhu Y N, Mu J J, Zheng G H, et al. Ceramics International, 2016, 4215, 17347.
50 Zhang J, Wang Y, Wang Y, et al. Environmental Science: Nano, 2022, 98, 2979.
51 Zhang Z, Zeng X, Wen L, et al. Fuel, 2023, 331, 125900.
52 Shen H, Fu F, Xue W, et al. Journal of Colloid and Interface Science, 2021, 599, 741.
53 Hu T, Li H, Liang Z, et al. Journal of Colloid and Interface Science, 2019, 545, 301.
54 Zhang L, Xu T, Zhao X, et al. Applied Catalysis B: Environmental, 2010, 983, 138.
55 Ma T, Jin S, Kong X, et al. Applied Surface Science, 2021, 548, 149244.
56 Qiu Y, Lu J, Yan Y, et al. Surfaces and Interfaces, 2022, 31, 102009.
57 Xie J, Cao Y, Hu J, et al. Green Chemistry, 2020, 224, 1424.
58 Tian G, Chen Y, Zhou W, et al. Journal of Materials Chemistry, 2011, 213, 887.
59 Deng Q. Preparation of bismuth molybdate based photocatalyst and its performance in reducing Cr(Ⅵ). Master’s Thesis, Donghua University, China, 2022(in Chinese).
邓强. 钼酸铋基光催化剂的制备及其还原Cr(Ⅵ)性能研究. 硕士学位论文, 东华大学, 2022.
60 Chen S. Preparation and photocalytic activity of modified bismuth tungstate. Master’s Thesis, University of Science and Technology Liaoning, China, 2021(in Chinese).
陈姝仪. 改性钨酸铋的制备及其光催化性能的研究. 硕士学位论文, 辽宁科技大学, 2021.
61 Bai J, Li X, Hao Z, et al. Journal of Colloid and Interface Science, 2020, 560, 510.
62 Shen H D, Fu F, Xue W W, et al. Journal of Colloid and Interface Science, 2021, 599, 741.
63 Zhao D, Cai C. Inorganic Chemistry Frontiers, 2020, 715, 2799.
64 Li Z Q, Chen X T, Xue Z L. CrystEngComm, 2013, 153, 498.
65 Sun Q, Zhao Y, Zhang J, et al. Chemosphere, 2022, 302, 134807.
66 Sun J, Shen C H, Guo J, et al. Journal of Colloid and Interface Science, 2021, 588, 19.
67 Hao Y. The perpration and photocalytic performance of novel Bi2MoO6-based hybrid photocatalyst. Master’s Thesis, Dalian Polytechnic University, China, 2017(in Chinese).
郝宇晨. 新型铋系光催化剂及其复合材料的制备及性能研究. 硕士学位论文, 大连工业大学, 2017.
68 Guo F, Chen Z, Huang X, et al. Separation and Purification Technology, 2021, 275, 119223.
69 Kumari N, Chhabra T, Kumar A, et al. Materials Letters, 2021, 302, 130455.
70 Wang D, Dong X, Lei Y, et al. Catalysis Science & Technology, 2022, 1218, 5709.
71 Mao Y, Qiu B, Zhang M, et al. Solar Energy, 2020, 207, 832.
72 Liu Y, Zhao S, Zhang C, et al. Carbon, 2021, 182, 287.
73 Jia Q, Nguyen P K, Gu Z, et al. Journal of Alloys and Compounds, 2021, 863, 158336.
74 Wu X, Zhang Q, Su C. FlatChem, 2021, 27, 100244.
75 Gong Y X, Wang J B, Chai B Y, et al. Chemical Journal of Higher Education, 2022, 43(6), 20220005(in Chinese).
龚妍熹, 王建兵, 柴歩瑜, 等. 高等学校化学学报, 2022, 43(6), 20220005.
76 Jiang S. Preparation of metal-organic framework/inorganic semiconductor composites and its catalytic degradation of diclofenac sodium under visible light. Master’s Thesis, South-Central University for Nationalities, China, 2020(in Chinese).
蒋实.金属有机骨架/无机半导体复合材料的制备及其可见光下催化降解双氯芬酸钠的研究.硕士学位论文,中南民族大学,2020.
[1] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[2] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[3] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[4] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[5] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[6] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[7] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[8] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[9] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[10] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[11] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[12] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[13] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed