Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 5-10    https://doi.org/10.11896/j.issn.1005-023X.2017.018.002
  材料研究 |
苯甲酸钠改性石墨作为锂离子电池负极材料的性能
张婷, 李爱菊, 张丽田, 陈红雨
华南师范大学化学与环境学院, 广州 510006
Characterization of Graphite Modified with Sodium Benzoate as Anode Material for Lithium Ion Battery*
ZHANG Ting, LI Aiju, ZHANG Litian, CHEN Hongyu
School of Chemistry and Environment, South China Normal University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将不同浓度的苯甲酸钠改性的石墨电极作为锂离子电池的负极备用材料,并使用恒流充放电、循环伏安和交流阻抗等电化学方法表征电池的性能。结果表明,与初始的石墨电极相比,被改性后的石墨电极表现出更好的循环效率和稳定性,且在0.5C条件下,首次的充放电比容量分别为293.9 mAh/g和 326.4 mAh/g 。主要原因是改性后的石墨电极的表面形成的SEI膜能有效抑制石墨材料的膨胀,并且更有利于锂离子的迁移。同时,采用量子化学方法计算了溶剂分子和苯甲酸钠的最低空轨道和最高占据轨道能量值。结合电化学表征和量子计算结果,苯甲酸钠改性石墨电极的最佳浓度为1.0%。此外,还研究了最佳浓度改性石墨电极的高温性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷
李爱菊
张丽田
陈红雨
关键词:  改性石墨  苯甲酸钠  量子化学方法  高温性能  锂离子电池  负极材料    
Abstract: Graphite electrode was modified with different concentrations of sodium benzoate (C7H5O2Na) solutions for application as an anode material for lithium ion battery. The electrochemical characterization of graphite modified with sodium benzoate was carried out by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Results showed that the graphite modified with C7H5O2Na exhibits significantly better cycle efficiency and greater reversible capacity than original graphite, and the first reversible charge/discharge specific capacity of modified graphite anode approaches 293.9 mAh/g and 326.4 mAh/g at 0.5C, higher than that of untreated graphite. The reason is that electrolyte interface film formed on the graphite surface could hinder the graphite expansion and benefit Li+migration. Simultaneously, quantum chemistry method was cited for calculating the lowest-unoccupied (LUMO) and highest-occupied (HOMO) molecular orbital energies. All supporting surface analyses and electrochemical results demonstrated the optimum concentrations of C7H5O2Na modified graphite electrodes are 1wt%. Moreover, the effects of modified graphite electrodes on electrochemical properties of batteries also were discussed at elevated temperature and under the optimum C7H5O2Na concentration.
Key words:  modified graphite    sodium benzoate    quantum chemistry method    elevated temperature property    lithium ion battery    anode material
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21203068);教育部基金项目(20134407110006)
作者简介:  张婷:女,1990年生,硕士研究生,研究方向为电化学 E-mail:zting07@163.com 李爱菊:女,1976年生,副教授,硕士研究生导师,研究方向为电化学 E-mail:liaiju@scnu.edu.cn
引用本文:    
张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
ZHANG Ting, LI Aiju, ZHANG Litian, CHEN Hongyu. Characterization of Graphite Modified with Sodium Benzoate as Anode Material for Lithium Ion Battery*. Materials Reports, 2017, 31(18): 5-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.002  或          https://www.mater-rep.com/CN/Y2017/V31/I18/5
1 Besenhard J O, Winter M, Yang J, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J]. J Power Sources, 1995,54(2):228.
2 Fukuta K, Kikuya K, Isono K, et al. Foliated natural graphite as the anode material for rechargeable lithium-ion cells[J]. J Power Sources, 1997,69(1-2):165.
3 Abe T, Fukuda H, Iriyama Y, et al. Solvated Li-ion transfer at interface between graphite and electrolyte[J]. J Electrochem Soc, 2004,151(8):A1120.
4 Zheng H H, Fu Y B, Zhang H C, et al. Potassium salts electrolyte additives for enhancing electrochemical performances of natural graphite anodes[J]. Electrochem Solid State, 2006,9(3):A115.
5 Komaba S, Watanabe M, Groult H. Alkali chloride coating for graphite electrode of lithium-ion batteries[J]. J Electrochem Soc, 2010,157(12):A1375.
6 Nadeau G, Song X Y, Masse M, et al. Effect of heat-treatment and additives on the particles and carbon fibers as anodes for lithium-ion batteries[J]. J Power Sources, 2002,108(1-2):86.
7 Zhuang Q C, Li J, Tian L L. Potassium carbonate as film forming electrolyte additive for lithium-ion batteries[J]. J Power Sources, 2013,222:177.
8 Wrodnigg G H, Besenhard J O, Winter M. Cyclic and acyclic sulfite: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes[J]. J Power Sources, 2001,97-98:592.
9 Ota H, Sato T, Suzuki H, et al. TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. J Power Sources, 2001,97-98:107.
10Chen L B, Wang K, Xie X H, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. J Power Sources, 2007,174:538.
11Komaba S, Ishikawa T, Yabuuchi N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. Appl Mater Interfaces, 2011,3:4165.
12Wrodnigg G H, Wrodnigg T M, Besenhard J O, et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochem Commun, 1999,1:148.
13Lee J T, Wu M S, Wang F M, et al. Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion bat-teries[J]. J Electrochem Soc, 2005,152(9):A1837.
14Komaba S, Itabashi T, Kaplan B, et al. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive[J]. Electrochem Commun, 2003,5:962.
15Komaba S, Itabashi T, Watanabe M, et al. Electrochemistry of graphite in Li and Na salt co-dissolving electrolyte for rechargeable batteries[J]. J Electrochem Soc, 2007,154:A322.
16Choi Y K, Chung K, Kim W S, et al. Suppressive effect of Li2 CO3 on initial irreversibility at carbon anode in Li-ion batteries[J]. J Power Sources, 2002,104(1):132.
17Shin J S, Han C H, Jung U H,et al. Effect of Li2 CO3 additive on gas generation in lithium-ion batteries[J]. J Power Sources, 2002,109(1):47.
18Komaba S, Watanabe M, Groult H, et al. Impact of sodium salt coating on a graphite negative electrode for lithium-ion batteries[J]. J Electrochem Soc,2006,9:A130.
19Komaba S, Watanabe M, et al. Alkali carbonate-coated graphite electrode for lithium-ion batteries[J]. Carbon,2008,46:1184.
20Komaba S, Itabashi T, Kimura T, et al. Opposite influences of K+versus Na+ions as electrolyte additives on graphite electrode performance[J]. J Power Sources, 2005,146(1-2):166.
21Liao L X, Cheng X Q. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochim Acta, 2013,87:466.
22Han Y K, Lee K J. Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries[J]. Computat Theor Chem, 2014,1031:64.
23Aurbach D, Gamol K, Markovs B, et al. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn)[J]. J Electrochem Soc, 2000,147:1322.
24Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochim Acta, 2006,51:1636.
25Huang Y G, Lin X L, Pan Q C, et al. Al@C/expanded graphite composite as anode material for lithium ion batteries[J]. Electrochim Acta, 2016,193:253.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[5] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[6] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[7] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[8] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[9] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[10] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[11] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[12] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[13] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[14] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[15] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed