Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 5-10    https://doi.org/10.11896/j.issn.1005-023X.2017.018.002
  材料研究 |
苯甲酸钠改性石墨作为锂离子电池负极材料的性能
张婷, 李爱菊, 张丽田, 陈红雨
华南师范大学化学与环境学院, 广州 510006
Characterization of Graphite Modified with Sodium Benzoate as Anode Material for Lithium Ion Battery*
ZHANG Ting, LI Aiju, ZHANG Litian, CHEN Hongyu
School of Chemistry and Environment, South China Normal University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将不同浓度的苯甲酸钠改性的石墨电极作为锂离子电池的负极备用材料,并使用恒流充放电、循环伏安和交流阻抗等电化学方法表征电池的性能。结果表明,与初始的石墨电极相比,被改性后的石墨电极表现出更好的循环效率和稳定性,且在0.5C条件下,首次的充放电比容量分别为293.9 mAh/g和 326.4 mAh/g 。主要原因是改性后的石墨电极的表面形成的SEI膜能有效抑制石墨材料的膨胀,并且更有利于锂离子的迁移。同时,采用量子化学方法计算了溶剂分子和苯甲酸钠的最低空轨道和最高占据轨道能量值。结合电化学表征和量子计算结果,苯甲酸钠改性石墨电极的最佳浓度为1.0%。此外,还研究了最佳浓度改性石墨电极的高温性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷
李爱菊
张丽田
陈红雨
关键词:  改性石墨  苯甲酸钠  量子化学方法  高温性能  锂离子电池  负极材料    
Abstract: Graphite electrode was modified with different concentrations of sodium benzoate (C7H5O2Na) solutions for application as an anode material for lithium ion battery. The electrochemical characterization of graphite modified with sodium benzoate was carried out by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Results showed that the graphite modified with C7H5O2Na exhibits significantly better cycle efficiency and greater reversible capacity than original graphite, and the first reversible charge/discharge specific capacity of modified graphite anode approaches 293.9 mAh/g and 326.4 mAh/g at 0.5C, higher than that of untreated graphite. The reason is that electrolyte interface film formed on the graphite surface could hinder the graphite expansion and benefit Li+migration. Simultaneously, quantum chemistry method was cited for calculating the lowest-unoccupied (LUMO) and highest-occupied (HOMO) molecular orbital energies. All supporting surface analyses and electrochemical results demonstrated the optimum concentrations of C7H5O2Na modified graphite electrodes are 1wt%. Moreover, the effects of modified graphite electrodes on electrochemical properties of batteries also were discussed at elevated temperature and under the optimum C7H5O2Na concentration.
Key words:  modified graphite    sodium benzoate    quantum chemistry method    elevated temperature property    lithium ion battery    anode material
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21203068);教育部基金项目(20134407110006)
作者简介:  张婷:女,1990年生,硕士研究生,研究方向为电化学 E-mail:zting07@163.com 李爱菊:女,1976年生,副教授,硕士研究生导师,研究方向为电化学 E-mail:liaiju@scnu.edu.cn
引用本文:    
张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
ZHANG Ting, LI Aiju, ZHANG Litian, CHEN Hongyu. Characterization of Graphite Modified with Sodium Benzoate as Anode Material for Lithium Ion Battery*. Materials Reports, 2017, 31(18): 5-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.002  或          http://www.mater-rep.com/CN/Y2017/V31/I18/5
1 Besenhard J O, Winter M, Yang J, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J]. J Power Sources, 1995,54(2):228.
2 Fukuta K, Kikuya K, Isono K, et al. Foliated natural graphite as the anode material for rechargeable lithium-ion cells[J]. J Power Sources, 1997,69(1-2):165.
3 Abe T, Fukuda H, Iriyama Y, et al. Solvated Li-ion transfer at interface between graphite and electrolyte[J]. J Electrochem Soc, 2004,151(8):A1120.
4 Zheng H H, Fu Y B, Zhang H C, et al. Potassium salts electrolyte additives for enhancing electrochemical performances of natural graphite anodes[J]. Electrochem Solid State, 2006,9(3):A115.
5 Komaba S, Watanabe M, Groult H. Alkali chloride coating for graphite electrode of lithium-ion batteries[J]. J Electrochem Soc, 2010,157(12):A1375.
6 Nadeau G, Song X Y, Masse M, et al. Effect of heat-treatment and additives on the particles and carbon fibers as anodes for lithium-ion batteries[J]. J Power Sources, 2002,108(1-2):86.
7 Zhuang Q C, Li J, Tian L L. Potassium carbonate as film forming electrolyte additive for lithium-ion batteries[J]. J Power Sources, 2013,222:177.
8 Wrodnigg G H, Besenhard J O, Winter M. Cyclic and acyclic sulfite: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes[J]. J Power Sources, 2001,97-98:592.
9 Ota H, Sato T, Suzuki H, et al. TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. J Power Sources, 2001,97-98:107.
10Chen L B, Wang K, Xie X H, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. J Power Sources, 2007,174:538.
11Komaba S, Ishikawa T, Yabuuchi N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. Appl Mater Interfaces, 2011,3:4165.
12Wrodnigg G H, Wrodnigg T M, Besenhard J O, et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochem Commun, 1999,1:148.
13Lee J T, Wu M S, Wang F M, et al. Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion bat-teries[J]. J Electrochem Soc, 2005,152(9):A1837.
14Komaba S, Itabashi T, Kaplan B, et al. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive[J]. Electrochem Commun, 2003,5:962.
15Komaba S, Itabashi T, Watanabe M, et al. Electrochemistry of graphite in Li and Na salt co-dissolving electrolyte for rechargeable batteries[J]. J Electrochem Soc, 2007,154:A322.
16Choi Y K, Chung K, Kim W S, et al. Suppressive effect of Li2 CO3 on initial irreversibility at carbon anode in Li-ion batteries[J]. J Power Sources, 2002,104(1):132.
17Shin J S, Han C H, Jung U H,et al. Effect of Li2 CO3 additive on gas generation in lithium-ion batteries[J]. J Power Sources, 2002,109(1):47.
18Komaba S, Watanabe M, Groult H, et al. Impact of sodium salt coating on a graphite negative electrode for lithium-ion batteries[J]. J Electrochem Soc,2006,9:A130.
19Komaba S, Watanabe M, et al. Alkali carbonate-coated graphite electrode for lithium-ion batteries[J]. Carbon,2008,46:1184.
20Komaba S, Itabashi T, Kimura T, et al. Opposite influences of K+versus Na+ions as electrolyte additives on graphite electrode performance[J]. J Power Sources, 2005,146(1-2):166.
21Liao L X, Cheng X Q. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochim Acta, 2013,87:466.
22Han Y K, Lee K J. Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries[J]. Computat Theor Chem, 2014,1031:64.
23Aurbach D, Gamol K, Markovs B, et al. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn)[J]. J Electrochem Soc, 2000,147:1322.
24Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochim Acta, 2006,51:1636.
25Huang Y G, Lin X L, Pan Q C, et al. Al@C/expanded graphite composite as anode material for lithium ion batteries[J]. Electrochim Acta, 2016,193:253.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[5] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[6] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[7] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[8] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[9] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[10] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[11] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[12] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[13] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[14] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[15] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed