Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21120052-11    https://doi.org/10.11896/cldb.21120052
  无机非金属及其复合材料 |
海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述
陈阳1,2, 胡翔1,2,*, 吴泽媚1,2, 史才军1,2
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南省绿色先进土木工程材料国际科技创新合作基地,长沙 410082
Review on the Deterioration of FRP Reinforced Concrete Structures Subjected to Marine Environment
CHEN Yang1,2, HU Xiang1,2,*, WU Zemei1,2, SHI Caijun1,2
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technologies of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Science and Technology Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4523KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国海洋工程的快速发展,海洋环境下混凝土结构内部钢筋锈蚀导致的钢筋混凝土性能降低和结构破坏等问题越来越凸显。基于轻质、高强、耐腐蚀等性能特点,采用纤维增强复合材料(Fiber reinforced polymer,FRP)与混凝土的组合结构被认为是海洋工程建设中的优异选择。本文介绍了不同海洋腐蚀环境如水或碱性溶液浸泡、紫外线辐射等作用下FRP的降解机理,以及FRP的拉伸、弯曲、剪切、压缩强度等力学性能的退化规律。同时,综述了FRP-混凝土界面性能劣化机理及其对FRP增强混凝土结构性能的影响规律。本文重点讨论海洋环境下FRP增强混凝土结构的界面粘结性能和力学性能,将为海洋环境下纤维增强复合材料性能的研究和工程结构设计提供理论基础和研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈阳
胡翔
吴泽媚
史才军
关键词:  纤维增强复合材料  海洋环境  劣化机理  界面粘结性能    
Abstract: With the rapid development of marine engineering in China, the degradation and destruction of reinforced concrete structures due to the steel corrosion in the marine environment are more and more prominent. Based on the properties of light weight, high strength, and excellent resistance to corrosion, the composite structure of fiber reinforced polymer (FRP) and concrete is considered as a kind of superior materials for marine structure. This paper mainly introduces the deterioration mechanism of FRP in the marine environments including water and alkaline solution immersion, ultraviolet radiation. The mechanical properties of FRP including tensile, bending, shear, and compression strength are introduced. Besides, the deterioration of FRP-concrete interface and its effects on the performance of FRP reinforced concrete structures are reviewed. The interfacial bonding strength and mechanical properties of the composite structure of FRP and concrete in marine environment are emphatically discussed, which can lay a theoretical foundation and provide a research guide for further study and application of composite materials and structure in the marine environment.
Key words:  fiber reinforced polymer    marine environment    deterioration mechanism    interfacial bonding property
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2021YFF0500801);国家自然科学基金(52278257)
通讯作者:  *胡翔,湖南大学土木工程学院副教授。2012年毕业于湖南大学土木工程学院,2018年于比利时根特大学结构工程学院博士毕业,2020年6月入职湖南大学土木工程学院。研究课题方向主要有水泥基材料耐久性评估与设计、低碳水泥基材料设计制备、二氧化碳养护制备水泥混凝土制品等。参与多项国家自然科学基金项目,撰写英文专著一本。在Cement and Concrete Research、Cement and Concrete Composites等期刊以第一作者或者通信作者发表学术论文20余篇。xianghu@hnu.edu.cn   
作者简介:  陈阳,2020年6月毕业于长沙理工大学,获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在胡翔副教授的指导下进行研究。目前主要研究领域为FRP-海水海砂混凝土界面粘结性能。
引用本文:    
陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
CHEN Yang, HU Xiang, WU Zemei, SHI Caijun. Review on the Deterioration of FRP Reinforced Concrete Structures Subjected to Marine Environment. Materials Reports, 2023, 37(18): 21120052-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120052  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21120052
1 Ren H T, Yao Q F, Hu A N. Journal of Building Materials, 2005, 8(5), 520 (in Chinese).
任慧韬, 姚谦峰, 胡安妮, 建筑材料学报, 2005, 8(5), 520.
2 Helm-Clark C M , RodgersD W, Smith R P. Journal of Applied Geophy-sics, 2004, 55(1), 3.
3 Sousa J M, Correia J R, Gonilha J, et al. Composites Part B: Enginee-ring, 2019, 158, 475.
4 Gao N. The application of fiber reinforced polymer in civil engineering, Master's Thesis, Xi'an Technology University, China, 2012 (in Chinese).
高娜, 纤维增强复合材料在土木工程中的应用, 硕士学位论文, 西安工业大学, 2012.
5 Al-Salloum Y A, El-Gamal S, Almusallam T H, et al. Composites Part B: Engineering, 2013, 45(1), 835.
6 Teng J G. In: Proceedings of 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Lismore, Australia, 2014.
7 Xue B, Sun Q R, Wang C Y, et al. China Energy and Environmental Protection, 2017, 39(4), 174 (in Chinese).
薛斌, 孙启荣, 王辰宇, 等. 能源与环保, 2017, 39(4), 174.
8 Liang S. Experimental studies on the influence of marine environment to concrete structure. Master's Thesis, Nanjing University of Science and Technology, China, 2006 (in Chinese).
梁爽. 海洋环境对混凝土结构影响的试验研究, 硕士学位论文, 南京理工大学, 2006.
9 Fam A, Boles R,Robert M, Journal of Bridge Engineering, 2016, 21(1), 04015032.
10 Ramezanianpour A A, Esmaeili M, Ghahari S A, et al. Construction and Building Materials, 2013, 44, 411.
11 Banthia N , Gupta R. Cement and Concrete Research, 2006, 36(7), 1263
12 Vafaei D, Hassanli R, Ma X, et al. Construction and Building Materials, 2021, 270, 121436.
13 Pakravan H R, Ozbakkaloglu T. Construction and Building Materials, 2019, 207, 491.
14 Si W, Cao M, Li L. Construction and Building Materials, 2020, 265, 120347.
15 Xu F, Deng X, Peng C, et al. 2017, 150, 179.
16 Zhang P, Wang K X, Wang J, et al. Ceramics International, 2020, 46(12), 20027.
17 Lee S J, Shin H J, Park C G, Applied Sciences, 2021, 11(10), 4595.
18 Xing J, Antioxidant modification of polyphenylene sulfide (PPS) and research on its structure and performance, Master's Thesis, Jiangnan University, China, 2017 (in Chinese).
邢剑, 聚苯硫醚抗氧化改性及其结构与性能的研究, 硕士学位论文, 江南大学, 2017.
19 Zhao Q, Zhang D X, Zhao X L, et al. Composites Science and Technology, 2021, 215, 108961.
20 Nair P M, Anantakrishnan S V. Proceedings of the Indian Academy of Sciences, 1950, 32, 330.
21 Robert M, Roy R, Benmokrane B. Polymer Composites, 2010, 31(4), 604.
22 Mikols W J, Seferis J C. Polymer Composites, 2010, 3(3), 118.
23 Pérez-Pacheco E, Cauich-Cupul J I, Valadez-González A, et al. Journal of Materials Science, 2013, 48(5), 1873.
24 Xian G, Karbhari V M. Polymer Degradation and Stability, 2007, 92(9), 1650.
25 Earl J S, Shenoi R A. Composites Part A: Applied Science and Manufacturing, 2004, 35(11), 1237.
26 Akay M , Mun S K A, Stanley A. Composites Science and Technology, 1997, 57(5), 565.
27 Ray B C. Journal of Colloid and Interface Science, 2006, 298(1), 111.
28 Yi C, Davalos J F, Ray I, et al. Composite Structures, 2007, 78(1), 101.
29 Rybin V A, Utkin A V, Baklanova N I. Cement and Concrete Research, 2013, 53, 1.
30 Wei B, Cao H, Song S. Corrosion Science, 2011, 53(1), 426.
31 Kumar B G, Singh R P, Nakamura T. Journal of Composite Materials, 2002,36(24), 455.
32 Chin J W, Nguyen T, Aouadi K. Journal of Composites Technology and Research, 1997, 19(4), 205.
33 Shokrieh M M, Bayat A. Journal of Composite Materials, 2007, 41(20), 2443.
34 Cabral-Fonseca S, Correia J R, Rodrigues M P, et al. Strain, 2012, 48(2), 162.
35 Jacques L. Progress in Polymer Science, 2000, 25(9), 1337.
36 Bazli M, Ashrafi H, Jafari A, et al. Polymers, 2019, 11(9), 1401.
37 Ishai O. Polymer Engineering and Science, 1975, 15(7), 491.
38 Nishizaki I, Meiarashi S. Journal of Composites for Construction, 2002, 6, 21.
39 Ellyin F, Maser R. Composites Science and Technology, 2004, 64(12), 1863.
40 Apicella A, Migliaresi C, Nicodemo L, et al. Composites, 1982,13(4), 406.
41 Wagner H D, Lustiger A. Composites, 1994, 25(7), 613.
42 Pritchard G, Taneja N. Composites, 1973, 4(5), 199.
43 Liao K, Schultheisz C R, Hunston D L. Composites Part B: Engineering, 1999, 30(5), 485.
44 Kafodya I, Xian G, Li H. Composites Part B: Engineering, 2015, 70, 138.
45 Xian G, Li H, Su X. Polymer Composites, 2012, 33(7), 1120.
46 Xian G, Li H, Su X. Journal of Composite Materials, 2013, 47(18), 2275.
47 Shirrell C D, Halpin J. In: Composite Materials: Testing and Design (Fourth Conference). Valley Forge, PA, 1977.
48 Browning C E, Husman C E, Whitney J M. In: Composite Materials: Testing and Design (Fourth Conference). Valley Forge, PA, 1977.
49 Levy R L, Fanter D L, Summers C J. Journal of Applied Polymer Science, 1979, 24(7), 1643.
50 Birger S, Moshonov A, Kenig S. Composites, 1989, 20(4), 341.
51 Gautier L, Mortaigne B, Bellenger V. Composites Science and Technology, 1999, 59(16), 2329.
52 Ray B C. Journal of Colloid and Interface Science, 2006, 298(1), 111.
53 Karbhari V M, Chin J W, Hunston D, et al. Journal of Composites for Construction, 2003, 7(3), 238.
54 Liu T, Liu X, Feng P. Composites Part B: Engineering, 2020, 191, 107958.
55 Shan Y, Liao K. Composites Part B: Engineering, 2001, 32(4), 355.
56 Liu G Z, Li D H, Huang L G, et al. Composites Science and Engineering, 2008, 203(1), 35(in Chinese).
刘观政, 李地红, 黄力刚, 等. 复合材料科学与工程, 2008, 203(1), 35.
57 Silva M A G, Biscaia H. Composite Structures, 2008, 85(2), 164.
58 Rifai M A, El-Hassan H, El-Maaddawy T, et al. Construction and Buil-ding Materials, 2020, 243, 118258.
59 Wu G, Dong Z Q, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 04014058.
60 Lu Z Y, Xian G J, Li H. Composites Part B, 2015, 77, 421.
61 Al-Salloum Y A, El-Gamal S, Almusallam T H, et al. Composites Part B Engineering, 2013, 45(1), 835.
62 Wu G, Wang X, Wu Z S, et al. Science and Engineering of Composite Materials, 2015, 22(6), 649.
63 Elgabbas F, Ahmed E A, Benmokrane B. Construction and Building Materials, 2015, 95, 623.
64 Benmokrane B, Elgabbas F, Ahmed E A, et al. Journal of Composites for Construction, 2015, 19(6), 04015008.
65 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Mate-rials, 2017, 139, 467.
66 Hollaway L C, Hollaway L. Polymers and polymer composites in construction, Thomas Telford Press, England. 1990.
67 Lohani S, Shubham, Prusty R K, et al. Materials Today: Proceedings, 2021, 43, 524.
68 Barbosa A P C, Fulco A P P, Guerra E S S, et al. Composites Part B: Engineering, 2017,110, 298.
69 Marouani S, Curtil L, Hamelin P. Composites Part B: Engineering, 2012, 43(4), 2020.
70 Afshar A, Alkhader M, Korach C S, et al. Composite Structures, 2015, 126, 72.
71 Bazli M, Ashrafi H, Oskouei A V. Construction and Building Materials, 2017, 148, 429.
72 Robert M, Benmokrane B. Construction and Building Materials, 2013, 38, 274.
73 Wang Z, Huang X Y, Xian G J, et al. Polymer Composites, 2016, 37(10), 2921.
74 Chen Y, Lin J H. Sichuan Architecture, 2005, 25(1), 73 (in Chinese).
陈莹, 林建华, 四川建筑, 2005, 25(1), 73.
75 Xing J Y, Yang Y X. Fujian Architecture and Construction, 2008(6), 45 (in Chinese).
邢建英, 杨勇新, 福建建筑, 2008(6), 45.
76 Xiao J Z, Li J, Zha Q F. Construction and Building Materials, 2004, 18(10), 745.
77 Maaddawy T E, Soudki K. Journal of Composites for Construction, 2005, 9(2), 187.
78 Micelli F, Mazzotta R, Leone M, et al. Journal of Composites for Construction, 2014, 19(3), 04014056.
79 Soles C L, Yee A F. Journal of Polymer Science Part B Polymer Physics, 2000, 38(5), 792.
80 Adamson M J. Journal of Materials Science, 1980, 15(7), 1736.
81 Dolan C, Tanner J, Mukai D, et al. In: National Cooperative Highway Research Program (NCHRP), Washington, DC, 2009.
82 Dong K, Hao J W, Li H J, et al. Journal of Highway and Transportation Research and Development, 2020, 37(4), 53(in Chinese).
董坤, 郝建文, 李汉江, 等. 公路交通科技, 2020, 37(4), 53.
83 Chen Y T,Miao F F,Tang C, et al. Journal of Hohai University(Natural Sciences), 2019, 47(5), 468 (in Chinese).
陈雨唐, 缪凡璠, 唐晨, 等. 河海大学学报(自然科学版), 2019, 47(5), 468.
84 Wei M W, Xie J H, Zhang H, et al. Composite Structures, 2019, 219, 185.
21120052-1085 Fazli H, Yassin A Y M, Shafiq N, et al. International Journal of Adhesion and Adhesives, 2018, 84,335.
86 Lutz L A, Gergely P. Journal Proceedings, 1967, 64(11), 711.
87 Tao Z, Han L H, Uy B, et al. Journal of Constructional Steel Research, 2011, 67(3), 484.
88 Yuan J S, Hadi M N S. Materials and Structures, 2018, 51(5), 1.
89 Bazli M, Zhao X L, Singh Raman R K, et al. Construction and Building Materials, 2020, 265, 120342.
90 Vilanova I, Baena M, Torres L, et al. Composites Part B: Engineering, 2015, 74, 42.
91 Dong Z Q, Wu G, Xu B, et al. Materials and Design, 2016, 92, 552.
92 Wang L, Mao Y D, Lv H B, et al. Construction and Building Materials, 2018, 162, 442.
93 Karbhari V M, Engineer M. Journal of Reinforced Plastics and Compo-sites, 1996, 15(12), 1194.
94 Toutanji H A, Gomez W. Cement and Concrete Composites, 1997, 19(4), 351.
95 Grace N F, Singh S B. ACI Structural Journal, 2005, 102(1), 40.
96 Almusallam T H. Cement and Concrete Composites, 2006, 28(10), 879.
97 Cha Y J, Buyukozturk O. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(5), 347.
98 Yu T, Cheng T K, Zhou A, et al. Construction and Building Materials, 2016, 109, 146.
99 Parvin A, Brighton D. Polymers, 2014, 6(4), 1040.
100 Kashi A, Rarnezanianpour A A, Moodi F. Construction and Building Materials, 2017, 151, 520.
101 Huang J T, Zhu D Y, Gao P, et al. Journal of Building Materials, 2020, 23(6), 1366 (in Chinese).
黄镜渟, 朱大勇, 高鹏, 等. 建筑材料学报, 2020, 23(6), 1366.
102 Durgadevi S, Karthikeyan S, Lavanya N, et al. Materials Today: Proceedings, 2021, 45, 1050.
103 Tang W S, Li S, Lu Y Y, et al. Engineering Structures, 2020, 213, 110570.
104 Ashour A F. Construction and Building Materials, 2006, 20(10), 1005.
105 Bentz E C, Massam L, Collins M P. Journal of Composites for Construction, 2010, 14(6), 637.
106 Shamass R, Cashell K A. Engineering Structures, 2020, 220, 110950.
107 Duic J, Kenno K, Das S. Construction and Building Materials, 2018, 176, 470.
108 Khanfour M A, Refai A E. Construction and Building Materials, 2017, 145, 135.
109 Dong Z Q, Wu G, Zhao X L, et al. Construction and Building Materials, 2018, 192, 671.
110 Laoubi K, El-Salakawy E, Benmokrane B. Cement and Concrete Compo-sites, 2006, 28(10), 869.
111 Hu X L, Xiao J Z, Zhang K J, et al. Journal of Building Engineering, 2022, 51, 104294.
112 Li Y L, Zhao X L, Raman R K S. Thin-Walled Structures, 2020, 148, 106596.
113 Zeng J J, Gao W Y, Duan Z J, et al. Construction and Building Mate-rials, 2020, 234, 117383.
[1] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[2] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[3] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[4] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
[5] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[6] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[7] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[8] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[9] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[10] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[11] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[12] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
[13] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[14] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[15] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed