Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21060194-8    https://doi.org/10.11896/cldb.21060194
  无机非金属及其复合材料 |
多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能
杨文飞1, 张钟元1, 张雪1, 王轶农1, 郭显娥2, 董星龙1,*
1 大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,辽宁 大连 116024
2 山西大同大学计算机与网络工程学院,山西 大同 037009
Synthesis and Electrochemical Lithium Storage Properties of Multicomponent Ni/NiO/rGO Nanocomposites
YANG Wenfei1, ZHANG Zhongyuan1, ZHANG Xue1, WANG Yinong1, GUO Xian'e2, DONG Xinglong1,*
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 School of Computer and Network Engineering, Shanxi Datong University, Datong 037009, Shanxi, China
下载:  全 文 ( PDF ) ( 15838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NiO由于理论容量高(718 mAh·g-1)、密度大、安全无污染,被认为是极具潜力的锂离子电池负极材料。然而,低电导率和固有体积膨胀限制了其在储能领域的应用。针对以上问题,本工作使用直流电弧等离子体法制备了Ni纳米粒子,在空气中氧化烧结后获得一维链状Ni/NiO纳米复合材料,将其与还原氧化石墨烯(Reduction graphene oxide, rGO)在无水乙醇溶液中均匀混合,并使用喷雾干燥及焙烧工艺获得了Ni/NiO/rGO纳米复合材料(Nanocomposites, NCs)。一维Ni/NiO纳米链被均匀地担载到二维石墨烯片层结构上,其中Ni、NiO和rGO组元含量分别为2.15%、87.83%和10.02%(质量分数)。Ni/NiO纳米链的一维状结构可有效缓解NiO活性组分在电化学循环过程中的体积膨胀,均匀分布的金属Ni粒子和石墨烯基体为电子输运提供了有利条件,从而提高了Ni/NiO/rGO NCs的电导率。此复合材料电极在0.1 A·g-1电流密度下循环100次后容量保持在1 016.8 mAh·g-1,表现出优异的电化学循环稳定性能和倍率性能。NiO基纳米材料的结构调控和性能优化为锂离子电池负极材料的多样性提供了可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文飞
张钟元
张雪
王轶农
郭显娥
董星龙
关键词:  氧化镍  还原氧化石墨烯  直流电弧等离子体  喷雾干燥  锂离子电池  负极材料    
Abstract: Nickel oxide is considered as a potential anode material for lithium-ion batteries (LIBs) due to the merits, such as high theoretical capacity (718 mAh·g-1), high density, good safety and environmental friendly. Unfortunately, the application in the field of energy storage is dramatically limited due to its low electrical conductivity and inherent volume variation. In response to the above problems, nickel nanoparticles were prepared by DC(Direct Current) arc discharge plasma method, those were further oxidized and sintered in air to obtain one-dimensional (1D) Ni/NiO nanochains. The as-prepared Ni/NiO nanochains were then uniformly mixed with graphene oxide (GO) in ethanol solution to synthesize Ni/NiO/rGO nanocomposites (NCs) through a spray drying and calcining process. 1D Ni/NiO nanochains are uniformly loaded onto the 2D rGO sheets, the mass fractions of Ni, NiO and rGO phases are of 2.15%, 87.83% and 10.02%, respectively. The 1D structure of Ni/NiO nanochains can effectively alleviate the volume expansion of active NiO phase during cycling. Meanwhile, the metallic Ni nanoparticles and rGO provide favorable conditions for electron transport, thus raising electrical conductivity of the Ni/NiO/rGO NCs. The Ni/NiO/rGO NCs electrode delivers a superior capacity of 1 016.8 mAh·g-1 at a current density of 100 mA·g-1 after 100 cycles. The reconstruction in structure and the performance optimization of NiO-based nanomaterial provide the possibility for the diversity of anode materials for LIBs.
Key words:  NiO    reduction graphene oxide    direct current arc plasma    spray drying    lithium-ion battery    anode material
发布日期:  2022-12-09
ZTFLH:  TB333  
基金资助: 国家自然科学基金联合重点项目(U1908220)
通讯作者:  *dongxl@dlut.edu.cn   
作者简介:  杨文飞,2016年6月毕业于贵州师范大学材料科学与工程专业,获得工学学士学位。现为大连理工大学硕博连读研究生,研究方向为直流电弧等离子体下纳米复合材料的制备及电化学性能。
董星龙,大连理工大学教授、博士研究生导师,教育部“新世纪优秀人才”。1997年获得中国科学院金属研究所博士学位,韩国材料研究所(KIMS)访问学者(1998—2001年),美国华盛顿大学材料系访问学者(2002—2009年)。在国内外学术刊物发表论文150余篇,专/译著3部,申请国家发明专利20余项,承担973、国家自然科学基金、省部级、企业项目30余项。其团队主要研究方向包括:纳米粉体材料制备技术与工程化应用、核/壳型纳米复合电磁功能材料、锂离子电池纳米复合负极材料、金属单原子催化剂、电子浆料及微电子核心器件等。
引用本文:    
杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
YANG Wenfei, ZHANG Zhongyuan, ZHANG Xue, WANG Yinong, GUO Xian'e, DONG Xinglong. Synthesis and Electrochemical Lithium Storage Properties of Multicomponent Ni/NiO/rGO Nanocomposites. Materials Reports, 2022, 36(23): 21060194-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060194  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21060194
1 Li Y, Wang W, Lin C, et al. Energy, 2021, 215(7179), 119050.
2 Ruan D R, Wu L, Wang F M, et al. Journal of Electroanalytical Chemistry, 2021, 884, 115073.
3 Rai A K, Gim J, Anh L T, et al.Electrochimica Acta, 2013, 100, 63.
4 Fang S, Bresser D, Passerini S.Advanced Energy Materials, 2019, 10(1), 1902485.
5 Zhang W Q, Xu X L, Zhou G W.Materials Reports A:Review Papers, 2018, 32(11), 3731(in Chinese).
张玮倩, 许秀玲, 周国伟. 材料导报:综述篇, 2018, 32(11), 3731.
6 Reddy M V, Rao G S, Chowdari B.Chemical Reviews, 2013, 113(7), 5364.
7 Wang Y, Li Y, Zhu J, et al.Materials Reports A:Review Papers, 2018, 32(11), 3712(in Chinese).
王莹, 李勇, 朱靖, 等. 材料导报:综述篇, 2018, 32(11), 3712.
8 Song Y, Zhao Y, Nan G, et al.Applied Catalysis B: Environmental, 2020, 270, 118888.
9 Song Y, Hwang J, Lee S, et al.Advanced Engineering Materials, 2020,22(11),2000351.
10 Kong X W, Zhang R L, Zhong S K, et al.Materials Science-Poland, 2016, 34(2), 227.
11 Singh J, Lee S, Kim S, et al. Journal of Alloys and Compounds, 2020, 850, 156755.
12 Aravindan V, Kumar P S, Sundaramurthy J, et al.Journal of Power Sources, 2013, 227, 284.
13 Zheng Q, Liu Y, Guo H,et al. Materials Research Bulletin, 2017, 98, 155.
14 Cao F, Zhang F,Deng R, et al. Crystengcomm, 2011, 13(15), 4093.
15 Xin C, Zhang N, Sun K. Electrochemistry Communications, 2012, 20, 137.
16 Huang X H, Tu J P, Xia X H, et al.Journal of Power Sources, 2009, 188(2), 588.
17 Mai L, Tian X, Xu X, et al.Chemical Reviews, 2014, 114(23), 11828.
18 Mai L Q, Yang F, Zhao Y L, et al.Nature Communications, 2011, 2, 381.
19 Huang W, Ouyang X, Lee L J.ACS Nano, 2012, 6, 10178.
20 Cui W, Li M, Liu J, et al. ACS Nano, 2014, 8, 9511.
21 Ren H, Wen Z, Chen S, et al.Materials Chemistry and Physics, 2019, 232, 229.
22 Li X, Fan L, Li X, et al. Materials Chemistry and Physics, 2018, 217, S0254058418305492.
23 Gawai U P, Gaikwad, Bodke M R, et al.Physical Chemistry Chemical Physics, 2019, 21(3), 1294.
24 Singh H, Iyengar N, Rajput P, et al.Materials Research Bulletin, 2019, 112, 363.
25 Liu J, Xu Y G, Kong L B. Ionics, 2021, 21, 1781.
26 Ferrari A C, Basko D M.Nature Nanotechnology, 2013, 8(4), 235.
27 Rui Z, Zheng T B, Hw B, et al.Electrochimica Acta, 2020, 364,136996.
28 Banerjee A, Gokhale R, Bhatnagar S, et al. Journal of Materials Chemistry, 2012, 22(37), 19694.
29 Zou F, Chen Y M, Liu K W, et al. ACS Nano, 2016, 10, 377.
30 Kumar H, Rajrani, Rahul, et al.Chemical Data Collections, 2020, 29, 100527.
31 Cao G Z,Wang Y. Nanostructures and nanomaterials, High Education Press,China, 2012 (in Chinese).
曹国忠, 王颖. 纳米结构和纳米材料,高等教育出版社,2012.
32 Zhang J, Tahmasebi A, Omoriyekomwan J E, et al.Fuel Processing Technology, 2021, 213, 106714.
33 Polat D B, Keles O, Amine K.Journal of Power Sources, 2016, 304, 273.
34 Huang X H, Tu J P, Zhang C Q, et al. Electrochimica Acta, 2010, 55(28), 8981.
35 Singh J, Lee S, Kim S, et al.Journal of Alloys and Compounds, 2020, 850, 156755.
36 Aravindan V, Kumar P S, Sundaramurthy J. Journal of Power Sources, 2013, 227, 284.
37 Li L, Raji A, Tour J M.Advanced Materials, 2013, 25(43), 6298.
38 Jin X, Tian R X, Wu A, et al.Dalton Transactions, 2020, 49(7), 2225.
[1] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[2] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[3] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[4] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[5] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[6] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[7] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[8] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[9] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[10] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[11] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[12] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[13] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[14] 李诗杰, 韩奎华. 利用少量氧化镍负载提高活性炭比电容[J]. 材料导报, 2021, 35(4): 4012-4016.
[15] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed