Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010049-8    https://doi.org/10.11896/cldb.22010049
  无机非金属及其复合材料 |
基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究
郭乃胜1,†, 于安康1,†, 王志臣2,3,*, 房辰泽1
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 沈阳建筑大学交通工程学院,沈阳 110168
3 哈尔滨剑桥学院汽车与机电工程学院,哈尔滨 150069
Study on Interaction Ability of Asphalt and Filler Based on Interfacial Adsorbed Film Thickness
GUO Naisheng1,†, YU Ankang1,†, WANG Zhichen2,3,*, FANG Chenze1
1 School of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
3 School of Automotive and Mechanical Engineering, Harbin Cambridge University, Harbin 150069, China
下载:  全 文 ( PDF ) ( 10571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青与矿粉的交互作用能力决定着沥青胶浆的路用性能,为了评价沥青与矿粉的交互作用能力并分析其作用机理,本研究采用吸附沥青膜厚度作为沥青与矿粉的交互作用评价指标,提出了基于Hashin模型、Mori-Tanaka模型和广义自洽模型的吸附沥青膜厚度计算方法,对三种计算方法进行了比较,并分析了矿粉酸碱性、试验温度和频率对沥青与矿粉交互作用能力的影响。结果表明:采用Hashin模型计算的吸附沥青膜厚度能够较好地评价沥青与矿粉的交互作用能力;矿粉中酸性SiO2含量越高,沥青与矿粉的交互作用能力越弱;当温度在软化点前后时,试验频率对沥青与矿粉交互作用能力的影响恰好相反;石灰岩矿粉与沥青的交互作用能力随着温度的增加而增大,粉煤灰颗粒表面致密的CaO-SiO2-Al2O3系统使得温度对其与沥青的交互作用能力的影响不大,煤矸石矿粉中含有的大量SiO2对其与沥青的交互作用能力产生抑制作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭乃胜
于安康
王志臣
房辰泽
关键词:  道路工程  沥青胶浆  交互作用能力  吸附沥青膜厚度  细观力学    
Abstract: The road performance of asphalt mastic is determined by the interaction ability of asphalt and filler. In order to accurately evaluate the physicochemical interaction between asphaltand filler, the asphalt-filler interaction mechanisms was analyzed. The interfacial adsorbed film thickness was used as the evaluation index of the asphalt-filler interaction in this study. New calculation methods of interfacial adsorbed film thickness were proposed based on Hashin model, Mori-Tanaka model and the generalized self-consistent model, and then the effects of filler acidity, test temperature and frequency on adsorbed film thickness were also investigated. The results show that the interaction between asphalt and filler can be more accurately evaluated by the interfacial adsorbed film thickness calculated based on Hashin model. The higher the content of acidic SiO2 in the filler, the weaker the interaction ability between the asphalt and filler. The influence of test frequency on interaction ability of asphalt and filler is opposite when the temperature is higher or lower than the softening point. The interaction ability of limestone filler and asphalt increases with the increase of temperature. The surface of fly ash particles is pyknotic CaO-SiO2-Al2O3 system, which makes the temperature have little effect on its interaction with asphalt. The large amount of SiO2 contained in coal waste filler inhibits its interaction with asphalt.
Key words:  road engineering    asphalt mastic    interaction ability    interfacial adsorbed film thickness    micromechanics
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TU414  
基金资助: 国家自然科学基金(51308084);中国博士后科学基金(2020M670731);中央高校基本科研业务费专项资金(3132017029);大连海事大学“双一流”建设专项(BSCXXM021);大连市科技创新基金(2020JJ26SN062)
通讯作者:  *王志臣,副教授,博士,博士后。2018年毕业于长安大学,获得道路材料科学与工程专业博士学位,2019—2021年,在大连海事大学进行博士后研究工作,主要从事道路材料微观及力学性能研究,近年来在国内外学术期刊发表文章10余篇。zhichenwang@163.com   
作者简介:  郭乃胜,教授,博士,博士后。2007年 3月份毕业于大连海事大学,获得工学博士学位。2009—2012年在哈尔滨工业大学进行博士后研究工作,2013—2014 年,美国密歇根理工大学访问学者。现任大连海事大学交通运输工程学院教授、博士研究生导师。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文70余篇,其中SCI、EI 检索 40 余篇。
于安康,2020年6月于山东建筑大学获得工学学士学位。现为大连海事大学交通运输工程学院硕士研究生,在郭乃胜、王志臣老师的指导下进行研究。目前主要从事沥青与沥青混合料的研究。
†共同第一作者
引用本文:    
郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
GUO Naisheng, YU Ankang, WANG Zhichen, FANG Chenze. Study on Interaction Ability of Asphalt and Filler Based on Interfacial Adsorbed Film Thickness. Materials Reports, 2023, 37(17): 22010049-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010049  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010049
1 Tan Y Q, Guo M. Materials and Structures, 2014, 47(4), 605.
2 Tan Y Q, Wu J T, Li X M, et al. Journal of Harbin Institute of Technology, 2009, 42(7), 81 (in Chinese).
谭忆秋, 吴建涛, 李晓民, 等. 哈尔滨工业大学学报, 2009, 41(7), 81.
3 Tan Y Q, Wang D Q, Bian X, et al. Journal of Highway and Transportation Research and Development, 2012, 29(11), 6 (in Chinese).
谭忆秋, 王大庆, 边鑫, 等. 公路交通科技, 2012, 29(11), 6.
4 Huang S C, Robertson R E. Road Materials and Pavement Design, 2006, 7(2), 179.
5 Guo M. Interfacial behavior of asphalt mastics and its mechanism. Master’s Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
郭猛. 沥青胶浆的界面行为与机理分析. 硕士学位论文, 哈尔滨工业大学, 2012.
6 Liu G Q, Jia Y S, Pan Y Y, et al. Road Materials and Pavement Design, 2020, 21(4), 906.
7 Zhang J P, Liu G Q, Zhu C Z, et al. Road Materials and Pavement Design, 2017, 18(6), 1338.
8 Guo M. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph. D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2016.
9 Yan J J. Road construction materials, Communications Press, China, 2004 (in Chinese).
严家伋. 道路建筑材料, 人民交通出版社, 2004.
10 Tan Y Q, Guo M. Materials and Structures, 2014, 47(4), 605.
11 Guo M, Bhasin A, Tan Y Q. Construction and Building Materials, 2017, 141(6), 152.
12 Guo M, Tan Y Q, Yu J, et al. Materials and Structures, 2017, 50(2), 1.
13 Buttlar W G, Bozkurt D, Al-Khateeb G G, et al. Transportation Research Record, 1999, 1681(1), 157.
14 Li F, Yang Y Y, Wang L B. Construction and Building Materials, 2020, 252(8), 119.
15 Li F, Yang Y Y. Construction and Building Materials, 2020, 244(8), 118.
16 Zhang Y Q, Huang X M. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(1), 52 (in Chinese).
张裕卿, 黄晓明. 吉林大学学报(工学版), 2010, 40(1), 52.
17 Li Y Q, Metcalf J B. Journal of Materials in Civil Engineering, 2005, 17(4), 407.
18 Yin H M, Buttlar W G, Paulino G H, et al. Road Materials and Pavement Design, 2008, 9(1), 31.
19 Guo N S, Zhao Y H. Engineering Mechanic, 2012, 29(10), 13 (in Chinese).
郭乃胜, 赵颖华. 工程力学, 2012, 29(10), 13.
20 Hashin Z. Applied Mechanics, 1962, 29(1), 143.
21 Du S Y, Wang B. Mesomechanics of composite, Science Press, China, 1998, pp. 41 (in Chinese).
杜善义, 王彪. 复合材料细观力学, 科学出版社, 1998, pp. 41.
22 Shashidhar N, Shenoy A. Mechanics of Materials, 2002, 34(10), 657.
23 Mori T, Tanaka K. Acta Metallurgica, 1973, 21(5), 571.
24 Underwood B S, Kim Y R. Mechanics of Materials, 2014, 75(8), 13.
25 Christensen R M, Lo K H. Mechanics and Physics of Solids, 1979, 27(4), 315.
26 Di Benedetto H, Olard F, Sauzéat C, et al. Road Materials and Pavement Design, 2004, 5(9), 163.
27 Cheng Y C, Tao J L, Jiao Y B, et al. Construction and Building Materials, 2016, 118(8), 268.
28 Xing M L, Li Z Z, He R, et al. Journal of Materials Science and Engineering, 2016, 34(4), 556 (in Chinese).
邢明亮, 李祖仲, 何锐, 等. 材料科学与工程学报, 2016, 34(4), 556.
29 Zhou Z X. Research on relationship of filler and the high-and-low temperature performance of asphalt mortar and performance prediction of asphalt mortar. Master’s Thesis, Hunan University, China, 2013 (in Chinese).
周志雄. 填料对沥青胶浆高低温性能影响与沥青胶浆性能预测研究. 硕士学位论文, 湖南大学, 2013.
30 Tan Y Q, Li X L, Wu J T, et al. China Journal of Highway and Transport, 2012, 25(3), 65 (in Chinese).
谭忆秋, 李晓琳, 吴建涛, 等. 中国公路学报, 2012, 25(3), 65.
31 Ke G J, Yang X F, Peng H, et al. Journal of China Coal Society, 2005, 30(3), 366 (in Chinese).
柯国军, 杨晓峰, 彭红, 等. 煤炭学报, 2005, 30(3), 366.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[4] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[5] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[6] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[7] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[8] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[9] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[10] 胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
[11] 张吉哲, 王静, 李岩, 唐小丹, 许成虎, 王业飞, 苏纪壮, 张国扬, 何亮. 沥青胶浆-集料界面水盐侵蚀损伤规律研究[J]. 材料导报, 2022, 36(16): 22040097-9.
[12] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[13] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[14] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[15] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed