Research Progress on Sugar-based Melamine Formaldehyde Resin as Wood Adhesives
LIU Jinming1, ZHANG Yifu2, GAN Weixing1,2,*, MO Hailin1,3,*
1 College of Environment and Resources, Guangxi Normal University, Guilin 541000, Guangxi, China 2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 3 Resource County Tiansheng Development New Material Co., Ltd., Guilin 541400, Guangxi, China
Abstract: Melamine formaldehyde resin (MF), commonly synthesized by the polycondensation of melamine and formaldehyde under alkaline catalyst conditions, belongs to one of the three major aldehyde-based thermosetting adhesives and ranks No.3 of the adhesives with most consumption in global wood industry. MF has many excellent performances, such as strong bonding strength, high hardness, good boiling water resis-tance, excellent thermal stability, wonderful low-temperature curing ability, and outstanding wear resistance. Meanwhile, MF also has some shortcomings which have been for a long time limiting its industrial applications to some extent, e.g., brittleness, short shelf life, high price, etc. Therefore, it is of vital practical significance to seek low-cost, high-performance and eco-friendly methods of modifying MF. Sugars are a kind of natural renewable substances with low cost and wide source, and more importantly, capability of being decomposed into active monomers with hydroxyl and aldehyde groups under suitable conditions. These monomers can react with formaldehyde or amino-group, which results in reduced condensation time. The addition of sugar can also improve the toughness and thermal stability of the products, and hence is a potential method to overcome the inherent brittleness of MF. This article reviews recent research on sugar including sucrose, maltose and glucose, used as the raw materials to synthesize sugar-based melamine formaldehyde resins. It also gives detailed description about the authors’ understanding of the synthetic mechanism, and summary of bonding strength, thermal stability and free formaldehyde content of sugar-based melamine formaldehyde resins. This work is expected to provide theoretical support for the high-value utilization of sugar and the development of sugar-based melamine formaldehyde copolymer adhesives.
1 Li J, Zhang Y. Polymers, 2021, 13(5), 673. 2 Qin Z, Teng K. The Journal of Adhesion, 2022, 98, 2348. 3 Kawalerczyk J, Siuda J, Mirski R, et al. BioResources, 2020, 15(2), 4052. 4 Pu H, Han K, Dai R, et al. International Journal of Adhesion and Adhesives, 2022, 113, 103061. 5 Ren T, Wang Y, Wu N, et al. Journal of Hazardous Materials, 2021,426, 127783. 6 Zhao Y, Yan N, Feng M. International Journal of Adhesion and Adhesives, 2010, 30(8), 689. 7 Chen H B, Li X L, Chen M J, et al. Carbohydrate Polymers, 2019, 206, 609. 8 Park B D, Jeong H W. Journal of Industrial and Engineering Chemistry, 2010, 16(3), 375. 9 Li H, Zhou H, Liu K, et al. Energy, 2021, 218, 119493. 10 Younis M, Alnouri S Y, Abu Tarboush B J, et al. International Journal of Green Energy, 2018, 15(13), 837. 11 Adamová T, Hradecký J, Pánek M. Polymers, 2020, 12(10), 2289. 12 Hwang J G, Kim I S, Lee E Y. Toxicology and Environmental Health Sciences, 2015, 7(2), 124. 13 Ferdosian F, Pan Z, Gao G, et al. Polymers, 2017, 9(12), 70. 14 Din Z, Chen L, Xiong H, et al. Starch-Stärke, 2020, 72(3-4), 1900276. 15 Kim J Y, Lee H W, Lee S M, et al. Bioresource Technology, 2019, 279, 373. 16 Song Y, Wang Z, Zhang X, et al. Journal of Renewable Materials, 2021, 9(5), 943. 17 Jiang K, Lei Z, Yi M, et al. RSC Advances, 2021, 11(44), 27126. 18 Chen X, Yao W, Gao F, et al. Journal of Renewable Materials, 2021, 9(5), 979. 19 Chen X, Pizzi A, Fredon E, et al. The Journal of Adhesion, 2022, 98(7), 871. 20 Dušek J, Jerman M, Podlena M, et al. Construction and Building Materials, 2021, 300, 124036. 21 Xing J, Li T, Yu Y, et al. International Journal of Adhesion and Adhesives, 2018, 87, 91. 22 Pizzi A. Annals of Forest Science, 2016, 73(1), 185. 23 Hu H C, Zhang Y, Zeng T, et al. Cellulose, 2018, 25(7), 3843. 24 Chen L, Wang Y J, Zia-ud-Din, et al. International Journal of Biological Macromolecules, 2017, 104, 137. 25 Umemura K, Ueda T, Munawar S S, et al. Journal of Applied Polymer Science, 2012, 123(4), 1991. 26 Umemura K, Sugihara O, Kawai S. Journal of Wood Science, 2013, 59(3), 203. 27 Xi X, Pizzi A. Journal of Renewable Materials, 2020, 8(7), 715. 28 Xi X, Pizzi A, Lei H, et al. International Journal of Adhesion and Adhesives, 2022, 112, 103027. 29 Chen S H, Zhao Q, Wang X. China Adhesives, 2007(11), 1 (in Chinese). 陈栓虎, 赵琼, 王西. 中国胶粘剂, 2007(11), 1. 30 Chen S H, Zhao Q, Wang X. Adhesion, 2007(6), 7 (in Chinese). 陈栓虎, 赵琼, 王西. 粘接, 2007(6), 7. 31 Chen Z A, Liu S L, Guo J Y, et al. Polymer Materials Science & Engineering, 2012, 28(10), 8 (in Chinese). 陈志安, 刘书林, 郭俊英, 等. 高分子材料科学与工程, 2012, 28(10), 8. 32 Chhatbar M U, Siddhanta A K. Journal of Applied Polymer Science, 2015, 132(33), 3269. 33 Shimizu S. Chemical Physics Letters, 2013, 582, 129. 34 Zhang Y F, Yang H B, Gan W X, et al. Journal of Guilin University of Technology, 2016, 36(2), 314 (in Chinese). 张一甫, 杨海兵, 甘卫星, 等. 桂林理工大学学报, 2016, 36(2), 314. 35 Yang H B. Study on structural characterization and synthesis mechanism of water-soluble SMF resins. Master’s Thesis, Guangxi University, China, 2015 (in Chinese). 杨海兵. 水溶性SMF树脂的结构表征及合成机理研究. 硕士学位论文, 广西大学, 2015. 36 Wu S, Pan H. Journal of Food Processing and Preservation, 2016, 40, 14. 37 Yang H B, Gan W X, Pan L C, et al. China Forest Products Industry, 2015, 42(7), 29 (in Chinese). 杨海兵, 甘卫星, 潘礼成, 等. 林产工业, 2015, 42(7), 29. 38 Pan L C. Synthesis and properties characterization of maltose-melamine-formaldehyde resin. Master’s Thesis, Guangxi University, China, 2014 (in Chinese). 潘礼成. 麦芽糖-三聚氰胺-甲醛树脂的合成及其性能表征. 硕士学位论文, 广西大学, 2014. 39 Galant A L, Kaufman R C, Wilson J D. Food Chemistry, 2015, 188, 149. 40 Lyu J B, Gan W X, Yang H B, et al. China Forest Product Industry, 2016, 43(7), 15 (in Chinese). 吕静波, 甘卫星, 杨海兵, 等. 林产工业, 2016, 43(7), 15. 41 Kohlmayr M, Zuckerstätter G, Kandelbauer A. Journal of Applied Polymer Science, 2011, 124(6), 4416. 42 Gan W, Yang H, Zhang Y, et al. BioResources, 2016, 11(1), 2516. 43 Long Y F, Yang K D, Zhang L. Materials Research and Application, 2008, 2(4), 409 (in Chinese). 龙云飞, 杨克迪, 张勇. 材料研究与应用, 2008, 2(4), 409. 44 Chen S H, Wu W G, Zhang L. Chemistry and Adhesion, 2007(5), 329 (in Chinese). 陈栓虎, 吴伟佳, 张蕾. 化学与粘合, 2007(5), 329. 45 Liu X C, Wang K L, Gan W X, et al. Journal of Guilin University of Technology, 2018(3), 513 (in Chinese). 刘雪纯, 王凯伦, 甘卫星, 等. 桂林理工大学学报, 2018(3), 513. 46 Merline D J, Vukusic S, Abdala A A. Polymer Journal, 2013, 45(4), 413. 47 Ma Q. Study on synthesis and structural characterization of melamine-sugar-formaldehyde (MSF) copolycondensation resin. Master’s Thesis, Guangxi University, China, 2013 (in Chinese). 马庆. 三聚氰胺-蔗糖-甲醛共缩聚树脂(MSF)合成与结构表征的研究. 硕士学位论文, 广西大学, 2013. 48 Bagheri I, Mohammadi L, Zadsirjan V, et al. ChemistrySelect, 2021, 6(5), 1008. 49 Lv J B. Study on curing reaction mechanism of water-soluble SMF resins. Master’s Thesis, Guangxi University, China, 2016 (in Chinese). 吕静波. 水溶性SMF树脂的固化机理研究. 硕士学位论文, 广西大学, 2016. 50 Lan P, Yang R, Mao H Y, et al. BioResources, 2019, 14(4), 9916. 51 Gan W X, Tang X M, Wu N W, et al. Journal of Guilin University of Technology, 2011, 31(3), 423 (in Chinese). 甘卫星, 唐贤明, 伍能文, 等. 桂林理工大学学报, 2011, 31(3), 423. 52 Yang H B, Pan L C, Zhang Y F, et al. Journal of Guilin University of Technology, 2015, 35(3), 595 (in Chinese). 杨海兵, 潘礼成, 张一甫, 等. 桂林理工大学学报, 2015, 35(3), 595. 53 Kim S, Kim H J, Kim H S, et al. Macromolecular Materials and Engineering, 2006, 291(9), 1027. 54 Gangi M, Tabarsa T, Sepahvand S, et al. Journal of Adhesion Science and Technology, 2013, 27(13), 1407.