Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21120170-7    https://doi.org/10.11896/cldb.21120170
  高分子与聚合物基复合材料 |
糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展
刘金明1, 张一甫2, 甘卫星1,2,*, 莫海林1,3,*
1 广西师范大学环境与资源学院,广西 桂林 541000
2 广西大学资源环境与材料学院,南宁 530004
3 资源县天盛新型材料开发有限公司,广西 桂林 541400
Research Progress on Sugar-based Melamine Formaldehyde Resin as Wood Adhesives
LIU Jinming1, ZHANG Yifu2, GAN Weixing1,2,*, MO Hailin1,3,*
1 College of Environment and Resources, Guangxi Normal University, Guilin 541000, Guangxi, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
3 Resource County Tiansheng Development New Material Co., Ltd., Guilin 541400, Guangxi, China
下载:  全 文 ( PDF ) ( 5792KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三聚氰胺甲醛树脂由三聚氰胺和甲醛在碱性催化剂条件下缩聚而成,是三大醛基热固性胶黏剂之一,其产量在木材胶黏剂中排名第三。该树脂具有黏结强度高、硬度高、耐沸水性好、热稳定性好、低温固化能力强和耐磨性能突出等优点,但也存在脆性高、储存期短、生产成本高等缺点,以致长期以来其工业应用受到一定的限制。因此,探索低成本和高性能且环保兼顾的三聚氰胺甲醛树脂改性方法具有一定的现实意义。糖类具有价廉物广的特点,可在一定条件下分解为具有羟基和醛基的活性单体,能与氨基或甲醛反应,缩短缩合时间,还具有增强韧性和提高热稳定性的特性。本文综述了以蔗糖、麦芽糖和葡萄糖为原料合成糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展,并对合成机理、胶合强度、热稳定性和游离甲醛含量等进行探讨,希望为糖基三聚氰胺甲醛共聚树脂的开发以及糖类的高价值利用提供理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘金明
张一甫
甘卫星
莫海林
关键词:  蔗糖  麦芽糖  葡萄糖  三聚氰胺甲醛树脂  木材胶黏剂    
Abstract: Melamine formaldehyde resin (MF), commonly synthesized by the polycondensation of melamine and formaldehyde under alkaline catalyst conditions, belongs to one of the three major aldehyde-based thermosetting adhesives and ranks No.3 of the adhesives with most consumption in global wood industry. MF has many excellent performances, such as strong bonding strength, high hardness, good boiling water resis-tance, excellent thermal stability, wonderful low-temperature curing ability, and outstanding wear resistance. Meanwhile, MF also has some shortcomings which have been for a long time limiting its industrial applications to some extent, e.g., brittleness, short shelf life, high price, etc. Therefore, it is of vital practical significance to seek low-cost, high-performance and eco-friendly methods of modifying MF. Sugars are a kind of natural renewable substances with low cost and wide source, and more importantly, capability of being decomposed into active monomers with hydroxyl and aldehyde groups under suitable conditions. These monomers can react with formaldehyde or amino-group, which results in reduced condensation time. The addition of sugar can also improve the toughness and thermal stability of the products, and hence is a potential method to overcome the inherent brittleness of MF. This article reviews recent research on sugar including sucrose, maltose and glucose, used as the raw materials to synthesize sugar-based melamine formaldehyde resins. It also gives detailed description about the authors’ understanding of the synthetic mechanism, and summary of bonding strength, thermal stability and free formaldehyde content of sugar-based melamine formaldehyde resins. This work is expected to provide theoretical support for the high-value utilization of sugar and the development of sugar-based melamine formaldehyde copolymer adhesives.
Key words:  sucrose    maltose    glucose    melamine formaldehyde resin    wood adhesive
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ433.439  
  TQ323  
基金资助: 广西科技重大专项(桂科 AA18118044;AA17204067);国家自然科学基金(31360158);国家科技支撑计划(2015BAD14B03)
通讯作者:  *甘卫星,广西师范大学环境与资源学院研究员、硕士研究生导师,1982年中南林业科技大学木材加工专业本科毕业,从事竹木加工和胶黏剂领域的产学研工作。2004年调入广西大学,2019年柔性引进广西师范大学,从事木材胶黏剂和农林废弃物高值利用的科研和教学工作。主持国家自然科学基金、国家林业公益性科研专项、国家科技支撑项目(子课题)、中央财政等项目27项,发表论文46篇,申请发明专利18项(获授权8项)。gwxgxdx@126.com
莫海林,博士,资源县天盛新型材料开发有限公司总经理及技术总监、工程师。主要从事中高压绝缘材料、电机绝缘漆等产业化应用研究,并推行科技成果转化。已获发明专利 6 项,发表论文10余篇,其中SCI收录3篇。mohailinok@qq.com   
作者简介:  刘金明,2018年6月毕业于福建师范大学,获得工学学士学位。现为广西师范大学环境与资源学院硕士研究生,在甘卫星研究员的指导下进行研究。目前主要研究领域为环境功能材料的开发与应用。
引用本文:    
刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
LIU Jinming, ZHANG Yifu, GAN Weixing, MO Hailin. Research Progress on Sugar-based Melamine Formaldehyde Resin as Wood Adhesives. Materials Reports, 2023, 37(17): 21120170-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120170  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21120170
1 Li J, Zhang Y. Polymers, 2021, 13(5), 673.
2 Qin Z, Teng K. The Journal of Adhesion, 2022, 98, 2348.
3 Kawalerczyk J, Siuda J, Mirski R, et al. BioResources, 2020, 15(2), 4052.
4 Pu H, Han K, Dai R, et al. International Journal of Adhesion and Adhesives, 2022, 113, 103061.
5 Ren T, Wang Y, Wu N, et al. Journal of Hazardous Materials, 2021,426, 127783.
6 Zhao Y, Yan N, Feng M. International Journal of Adhesion and Adhesives, 2010, 30(8), 689.
7 Chen H B, Li X L, Chen M J, et al. Carbohydrate Polymers, 2019, 206, 609.
8 Park B D, Jeong H W. Journal of Industrial and Engineering Chemistry, 2010, 16(3), 375.
9 Li H, Zhou H, Liu K, et al. Energy, 2021, 218, 119493.
10 Younis M, Alnouri S Y, Abu Tarboush B J, et al. International Journal of Green Energy, 2018, 15(13), 837.
11 Adamová T, Hradecký J, Pánek M. Polymers, 2020, 12(10), 2289.
12 Hwang J G, Kim I S, Lee E Y. Toxicology and Environmental Health Sciences, 2015, 7(2), 124.
13 Ferdosian F, Pan Z, Gao G, et al. Polymers, 2017, 9(12), 70.
14 Din Z, Chen L, Xiong H, et al. Starch-Stärke, 2020, 72(3-4), 1900276.
15 Kim J Y, Lee H W, Lee S M, et al. Bioresource Technology, 2019, 279, 373.
16 Song Y, Wang Z, Zhang X, et al. Journal of Renewable Materials, 2021, 9(5), 943.
17 Jiang K, Lei Z, Yi M, et al. RSC Advances, 2021, 11(44), 27126.
18 Chen X, Yao W, Gao F, et al. Journal of Renewable Materials, 2021, 9(5), 979.
19 Chen X, Pizzi A, Fredon E, et al. The Journal of Adhesion, 2022, 98(7), 871.
20 Dušek J, Jerman M, Podlena M, et al. Construction and Building Materials, 2021, 300, 124036.
21 Xing J, Li T, Yu Y, et al. International Journal of Adhesion and Adhesives, 2018, 87, 91.
22 Pizzi A. Annals of Forest Science, 2016, 73(1), 185.
23 Hu H C, Zhang Y, Zeng T, et al. Cellulose, 2018, 25(7), 3843.
24 Chen L, Wang Y J, Zia-ud-Din, et al. International Journal of Biological Macromolecules, 2017, 104, 137.
25 Umemura K, Ueda T, Munawar S S, et al. Journal of Applied Polymer Science, 2012, 123(4), 1991.
26 Umemura K, Sugihara O, Kawai S. Journal of Wood Science, 2013, 59(3), 203.
27 Xi X, Pizzi A. Journal of Renewable Materials, 2020, 8(7), 715.
28 Xi X, Pizzi A, Lei H, et al. International Journal of Adhesion and Adhesives, 2022, 112, 103027.
29 Chen S H, Zhao Q, Wang X. China Adhesives, 2007(11), 1 (in Chinese).
陈栓虎, 赵琼, 王西. 中国胶粘剂, 2007(11), 1.
30 Chen S H, Zhao Q, Wang X. Adhesion, 2007(6), 7 (in Chinese).
陈栓虎, 赵琼, 王西. 粘接, 2007(6), 7.
31 Chen Z A, Liu S L, Guo J Y, et al. Polymer Materials Science & Engineering, 2012, 28(10), 8 (in Chinese).
陈志安, 刘书林, 郭俊英, 等. 高分子材料科学与工程, 2012, 28(10), 8.
32 Chhatbar M U, Siddhanta A K. Journal of Applied Polymer Science, 2015, 132(33), 3269.
33 Shimizu S. Chemical Physics Letters, 2013, 582, 129.
34 Zhang Y F, Yang H B, Gan W X, et al. Journal of Guilin University of Technology, 2016, 36(2), 314 (in Chinese).
张一甫, 杨海兵, 甘卫星, 等. 桂林理工大学学报, 2016, 36(2), 314.
35 Yang H B. Study on structural characterization and synthesis mechanism of water-soluble SMF resins. Master’s Thesis, Guangxi University, China, 2015 (in Chinese).
杨海兵. 水溶性SMF树脂的结构表征及合成机理研究. 硕士学位论文, 广西大学, 2015.
36 Wu S, Pan H. Journal of Food Processing and Preservation, 2016, 40, 14.
37 Yang H B, Gan W X, Pan L C, et al. China Forest Products Industry, 2015, 42(7), 29 (in Chinese).
杨海兵, 甘卫星, 潘礼成, 等. 林产工业, 2015, 42(7), 29.
38 Pan L C. Synthesis and properties characterization of maltose-melamine-formaldehyde resin. Master’s Thesis, Guangxi University, China, 2014 (in Chinese).
潘礼成. 麦芽糖-三聚氰胺-甲醛树脂的合成及其性能表征. 硕士学位论文, 广西大学, 2014.
39 Galant A L, Kaufman R C, Wilson J D. Food Chemistry, 2015, 188, 149.
40 Lyu J B, Gan W X, Yang H B, et al. China Forest Product Industry, 2016, 43(7), 15 (in Chinese).
吕静波, 甘卫星, 杨海兵, 等. 林产工业, 2016, 43(7), 15.
41 Kohlmayr M, Zuckerstätter G, Kandelbauer A. Journal of Applied Polymer Science, 2011, 124(6), 4416.
42 Gan W, Yang H, Zhang Y, et al. BioResources, 2016, 11(1), 2516.
43 Long Y F, Yang K D, Zhang L. Materials Research and Application, 2008, 2(4), 409 (in Chinese).
龙云飞, 杨克迪, 张勇. 材料研究与应用, 2008, 2(4), 409.
44 Chen S H, Wu W G, Zhang L. Chemistry and Adhesion, 2007(5), 329 (in Chinese).
陈栓虎, 吴伟佳, 张蕾. 化学与粘合, 2007(5), 329.
45 Liu X C, Wang K L, Gan W X, et al. Journal of Guilin University of Technology, 2018(3), 513 (in Chinese).
刘雪纯, 王凯伦, 甘卫星, 等. 桂林理工大学学报, 2018(3), 513.
46 Merline D J, Vukusic S, Abdala A A. Polymer Journal, 2013, 45(4), 413.
47 Ma Q. Study on synthesis and structural characterization of melamine-sugar-formaldehyde (MSF) copolycondensation resin. Master’s Thesis, Guangxi University, China, 2013 (in Chinese).
马庆. 三聚氰胺-蔗糖-甲醛共缩聚树脂(MSF)合成与结构表征的研究. 硕士学位论文, 广西大学, 2013.
48 Bagheri I, Mohammadi L, Zadsirjan V, et al. ChemistrySelect, 2021, 6(5), 1008.
49 Lv J B. Study on curing reaction mechanism of water-soluble SMF resins. Master’s Thesis, Guangxi University, China, 2016 (in Chinese).
吕静波. 水溶性SMF树脂的固化机理研究. 硕士学位论文, 广西大学, 2016.
50 Lan P, Yang R, Mao H Y, et al. BioResources, 2019, 14(4), 9916.
51 Gan W X, Tang X M, Wu N W, et al. Journal of Guilin University of Technology, 2011, 31(3), 423 (in Chinese).
甘卫星, 唐贤明, 伍能文, 等. 桂林理工大学学报, 2011, 31(3), 423.
52 Yang H B, Pan L C, Zhang Y F, et al. Journal of Guilin University of Technology, 2015, 35(3), 595 (in Chinese).
杨海兵, 潘礼成, 张一甫, 等. 桂林理工大学学报, 2015, 35(3), 595.
53 Kim S, Kim H J, Kim H S, et al. Macromolecular Materials and Engineering, 2006, 291(9), 1027.
54 Gangi M, Tabarsa T, Sepahvand S, et al. Journal of Adhesion Science and Technology, 2013, 27(13), 1407.
[1] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[2] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[3] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[4] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[5] 皮茂, 张守村, 魏杰, 李伟达. 采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征[J]. 材料导报, 2019, 33(16): 2804-2807.
[6] 孟露, 白波, 王洪伦, 索有瑞. 水热制备葡萄糖炭-涤纶复合纤维及其吸附性能研究[J]. 材料导报, 2018, 32(6): 881-887.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed