Preparation of Self-assembled Nanoparticles Superstructures and Their Properties Based on Structure-Activity Principle
QIN Xiaoyun1,*, SHAO Wenlong1, TIAN Kuan1, JIANG Liying2, LUO Dan3,4,*
1 School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China 2 School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China 3 Beijing Institute of Nanoenergy and Nanosystems, Beijing 101400, China 4 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: With the mature control of morphology and size of nanoparticles, the superstructure can be self-assembled with regular lattice structure from highly monodispersed nanoparticles (size deviation ≤5%). Nanomaterials scientists use the concept of ‘artificial solids’ to construct self-assembled superstructures, by exploiting nanoparticles as ‘artificial atoms’ in building supercrystals with different stacking modes through interactions between the adjacent particles. As a ‘bottom-up’ fabrication approach, the self-assembly method can achieve fabrication of material devices in large area. Structure-activity relationship is a basic principle that widely exists in nature. It refers to the relationship between the composition and structure of a substance and its physical and chemical properties. The self-assembled superstructures of nanoparticles based on different constructed bricks and stacking modes show special collective properties different fromboth individual nanoparticles and their bulk materials, and show broad application prospects in optics, electricity, catalysis, biomedicine and other fields. Based on the interaction between nanoparticles and taking full advantage of the external environment, researchers have developed a series of self-assembly methods to construct superstructures with customized performance, which is realized by designing the building blocks and stacking structures from the point of view of desired material properties. This review offers a retrospection of the self-assembled mechanism, methods, and research progress in this area, and provides elaborate descriptions about how the assembled superstructures take effects on their optical, electric, magnetic, and mechanical properties. It is focused on the embodiment of properties arising from the structure-activity principle in the self-assembled superstructures. By changing the components and structures of the self-assembled nanoparticles superstructures, different physical and chemical properties can be obtained to adapt to different application fields.
1 Urban J J, Talapin D V, Shevchenko E V, et al. Nature Materials, 2007, 6, 115. 2 Luo D, Yan C, Wang T. Small, 2015, 11(45), 5984. 3 Qin X Y, Wang T, Jiang L. National Science Review, 2017, 4(5), 672. 4 Li C, Qin X Y, Zhang Z H, et al. Nano Today, 2022, 42, 101354. 5 Shevchenko E V, Talapin D V, Kotov N A, et al. Nature, 2006, 439, 55. 6 Wang T, Wang X R, LaMontagne D, et al. Journal of the American Chemical Society, 2012, 134(44), 18225. 7 Wang T, Zhuang J Q, Lynch J, et al. Science, 2012, 338(6105), 358. 8 Luo D, Qin X Y, Song Q, et al. Advanced Functional Materials, 2017, 27(44), 1701982. 9 Xue Z J, Li X, Chen X Y, et al. Advanced Materials, 2020, 32(37), 2002004. 10 Qiao X Z, Su B S, Liu C, et al. Advanced Materials, 2018, 30(5), 1702275. 11 Macfarlane R J, Lee B, Jones M R, et al. Science, 2011, 334(6053), 204. 12 Auyeung E, Cutler J I, Macfarlane R J, et al. Nature Nanotechology, 2012, 7, 24. 13 Macfarlane R J, Jones M R, Lee B, et al. Science, 2013, 341(6151), 1222. 14 Girard M, Wang S Z, Du J S, et al. Science, 2019, 364(6446), 1174. 15 Gwo S, Chen H Y, Lin M H, et al. Chemical Society Reviews, 2016, 45(20), 5672. 16 Gavilán H, Kowalski A, Heinke D, et al. Particle & Particle Systems Characterization, 2017, 34(7), 1700094. 17 Xu H, Zhu X D, Sun K N, et al. Advanced Materials Interfaces, 2015, 2(15), 1500239. 18 Chen G Y, Du L, Du C Y, et al. Electrochemistry, 2017, 85(3), 133. 19 Chai S C, Cao X, Xu F R, et al. ACS Nano, 2019, 13(6), 7135. 20 Ogawa Y, Ando D, Sutou Y, et al. Science, 2016, 353(6297), 368. 21 Hueckel T, Hocky G M, Palacci J, et al. Nature, 2020, 580, 487. 22 Wang S Y, Xia F, Li F Y, et al. Scientia Sinica Chimica, 2019, 49(9), 1168(in Chinese). 王淑颖, 夏凡, 李方园, 等. 中国科学:化学, 2019, 49(9), 1168. 23 Shi W X, Lee Y H, Ling X Y, et al. Nanoscale, 2017, 9(31), 11239. 24 Shi Q X, Javorskis T, Bergquist K E, et al. Nature Communications, 2017, 8, 14943. 25 Du C F, Dinh K N, Liang Q H, et al. Advanced Energy Materials, 2018, 8(26), 1801127. 26 Caswell K K, Wilson J N, Bunz U H F, et al. Journal of the American Chemical Society, 2003, 125(46), 13914. 27 Nakata K, Hu Y, Uzun O, et al. Advanced Materials, 2008, 20(22), 4294. 28 Barry E, Dogic Z. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23), 10348. 29 Cheng W L, Hartman M R, Smilgies D M, et al. Angewandte Chemie-International Edition, 2010, 49(2), 380. 30 Quan Z W, Xu H W, Wang C Y, et al. Journal of the American Chemical Society, 2014, 136(4), 1352. 31 Hu Y X, Sun Y G. Journal of the American Chemical Society, 2013, 135(6), 2213. 32 Yan Y, Wang R, Qiu X H, et al. Journal of the American Chemical Society, 2010, 132(34), 12006. 33 Zheng Y H, Zheng X, Liu B, et al. Electrochimica Acta, 2020, 331, 135392. 34 Mundoor H, Senyuk B, Smalyukh I I. Science, 2016, 352(6281), 69. 35 Zeng Z P, Li Y B, Chen S F, et al. Journal of Materials Chemistry A, 2018, 6(24), 11154. 36 Pillai P P, Kowalczyk B, Grzybowski B A. Nanoscale, 2016, 8(1), 157. 37 Jiang K Y, Weng Y L, Guo S Y, et al. Nanoscale, 2017, 9(43), 16922. 38 Sui C H, Wang C, Wang Z Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 529, 425. 39 Sankaewtong K, Lei Q L, Ni R. Soft Matter, 2019, 15(15), 3104. 40 Wang H, Liu Y X, Chen Z Y, et al. Science Advances, 2020, 6(2), eaay1438. 41 Ahniyaz A, Sakamoto Y, Bergstrom L. Proceedings of the National Aca-demy of Sciences of the United States of America, 2007, 104(45), 17570. 42 Wan L, Song H Y, Chen X, et al. Advanced Materials, 2018, 30(25), 1707515. 43 Currie E P K, Norde W, Stuart M A C. Advances in Colloid and Interface Science, 2003, 100-102, 205. 44 Lim R Y H, Deng J. ACS Nano, 2009, 3(10), 2911. 45 Akcora P, Liu H J, Kumar S K, et al. Nature Materials, 2009, 8, 354. 46 Fan Z X, Bosman M, Huang X, et al. Nature Communications, 2015, 6, 7684. 47 Men D, Zhang T T, Hou L W, et al. ACS Nano, 2015, 9(11), 10852. 48 Zhang W, Lu X L, Mao J L, et al. Angewandte Chemie-International Edition, 2017, 56(47), 15014. 49 Wang X M, Shao Y, Jin P F, et al. Macromolecules, 2018, 51(3), 1110. 50 Zeng C J, Liu C, Chen Y X, et al. Journal of the American Chemical Society, 2016, 138(28), 8710. 51 Li Q, Russell J C, Luo T Y, et al. Nature Communications, 2018, 9, 3871. 52 Li P H, Li Y, Zhou Z K, et al. Advanced Materials, 2016, 28(13), 2511. 53 Lemineur J F, Schuermans S, Marae-Djouda J, et al. Journal of Physical Chemistry C, 2016, 120(16), 8883. 54 Li R P, Zhang J, Tan R, et al. Nano Letters, 2016, 16(4), 2792. 55 Agthe M, Wetterskog E, Bergstrom L. Langmuir, 2017, 33(1), 303. 56 Dong A G, Chen J, Vora P M, et al. Nature, 2010, 466, 474. 57 Mao M, Zhou B B, Tang X H, et al. Chemistry-A European Journal, 2018, 24(16), 4094. 58 Pan S, He L Z, Peng J, et al. Angewandte Chemie-International Edition, 2016, 55(30), 8686. 59 Wei W Q, Liu D, Wei Z, et al. ACS Catalysis, 2017, 7(1), 652. 60 Li H S, Shi J J, Deng J, et al. Advanced Materials, 2020, 32(23), 1907396. 61 Abdilla A, Dolinski N D, Roos P D, et al. Journal of the American Chemical Society, 2020, 142(4), 1667. 62 Zhuang J Q, Wu H M, Yang Y G, et al. Angewandte Chemie-International Edition, 2008, 47(12), 2208. 63 Zhuang J Q, Shaller A D, Lynch J, et al. Journal of the American Chemical Society, 2009, 131(17), 6084. 64 Zhuang J Q, Wu H M, Yang Y A, et al. Journal of the American Chemical Society, 2007, 129(46), 14166. 65 Huang X, Zhu J L, Ge B H, et al. Journal of the American Chemical Society, 2019, 141(7), 3198. 66 Wang Z W, Bian K F, Nagaoka Y, et al. Journal of the American Chemical Society, 2017, 139(41), 14476. 67 Shi D W, Wang Z G, Xu J K, et al. Chinese Science Bulletin, 2013, 58(24), 2367(in Chinese). 石党委, 王振刚, 徐景坤, 等. 科学通报, 2013, 58(24), 2367. 68 Ross M B, Ku J C, Vaccarezza V M, et al. Nature Nanotechology, 2015, 10, 453. 69 Park D J, Zhang C, Ku J C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 112(4), 977. 70 Jones M R, Seeman N C, Mirkin C A. Science, 2015, 347(6224), 1260901. 71 Wei W B, Bai F, Fan H Y. iScience, 2019, 11, 272. 72 Zhang S J, Pelligra C I, Feng X D, et al. Advanced Materials, 2018, 30(18), 1705794. 73 Wang P P, Qiao Q, Zhu Y M, et al. Journal of the American Chemical Society, 2018, 140(29), 9095. 74 Singh G, Chan H, Baskin A, et al. Science, 2014, 345(6201), 1149. 75 Wang N, Evans J S, Liu Q K, et al. Optical Materials Express, 2015, 5(5), 1065. 76 Boehm S J, Lin L, Betancourt K G, et al. Langmuir, 2015, 31(21), 5779. 77 Kundu P K, Samanta D, Leizrowice R, et al. Nature Chemistry, 2015, 7, 646. 78 Wu H M, Wang Z W, Fan H Y. Journal of the American Chemical Society, 2014, 136(21), 7634. 79 Li T T, Wang B W, Ning J, et al. Matter, 2019, 1(4), 976. 80 Correa-Duarte M A, Perez-Juste J, Sanchez-Iglesias A, et al. Angewandte Chemie-International Edition, 2005, 44(28), 4375. 81 Matricardi C, Hanske C, Garcia-Pomar J L, et al. ACS Nano, 2018, 12(8), 8531. 82 Feng J G, Song Q, Zhang B, et al. Advanced Materials, 2017, 29(46), 1703143. 83 Liu W Y, Halverson J, Tian Y, et al. Nature Chemistry, 2016, 8, 867. 84 Tian Y, Zhang Y G, Wang T, et al. Nature Materials, 2016, 15, 654. 85 Xue W T, Di Z H, Zhao Y, et al. Chinese Chemical Letters, 2019, 30(4), 899. 86 Liu B, Zhang J F, Li L L. Chemistry-A European Journal, 2019, 25(59), 13452. 87 Zhang J F, Di Z H, Yan H S, et al. Nano Letters, 2021, 21(7), 2793. 88 Jia R K, Wang Y N, Shang Y X, et al. Chinese Science Bulletin, 2018, 63(35), 3772(in Chinese). 贾若琨, 王园宁, 尚颖旭, 等. 科学通报, 2018, 63(35), 3772. 89 Zang X N, Chen W S, Zou X L, et al. Advanced Materials, 2018, 30(50), 1805188. 90 Li Y F, Prince E, Cho S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9), 2137. 91 Gao L, Gao H B, Lin J P, et al. Macromolecules, 2020, 53(20), 8992. 92 Liu D L, Zhou F, Li C C, et al. Angewandte Chemie-International Edition, 2015, 54(33), 9596. 93 Chen C F, Tzeng S D, Chen H Y, et al. Journal of the American Chemical Society, 2008, 130(3), 824. 94 Peng B, Li G Y, Li D H, et al. ACS Nano, 2013, 7(7), 5993. 95 Avci C, Imaz I, Carné-Sánchez A. Nature Chemistry, 2018, 10, 78. 96 Kim H, Ge J P, Kim J, et al. Nature Photonics, 2009, 3, 534. 97 Ge J P, He L, Goebl J, et al. Journal of the American Chemical Society, 2009, 131(10), 3484. 98 Ge J P, Yin Y D. Advanced Materials, 2008, 20(18), 3485. 99 Li J, Wang Y C, Zhou T, et al. Journal of the American Chemical Society, 2015, 137(45), 14305. 100 Feng J J, He L L, Fang R, et al. Journal of Power Sources, 2016, 330, 140. 101 Aurang Z G S M, Lin H F, Zulfiqar M, et al. Small, 2017, 13(24), 1700250. 102 Li M Z, Deng Y W, Wu G H, et al. Aggregate, 2021, 2(2), e17. 103 Liu Q D, He P L, Yu H D, et al. Science Advances, 2019, 5(7), eaax1081. 104 Qin X Y, Zhang J, Shao W L, et al. Electrochemistry Communications, 2021, 133, 107161. 105 Lisiecki I, Pileni M P. Comptes Rendus Chimie, 2009, 12(1-2), 235. 106 Fleutot S, Nealon G L, Pauly M, et al. Nanoscale, 2013, 5(4), 1507. 107 Farrell D, Cheng Y H, McCallum R W, et al. The Journal of Physical Chemistry B, 2005, 109(28), 13409. 108 Zhang H T, Bao N N, Yuan D, et al. Physical Chemistry Chemical Physics, 2013, 15(35), 14689. 109 Yang Y C, Wang B W, Shen S D, et al. Journal of the American Che-mical Society, 2018, 140(44), 15038. 110 Sawano K, Tsukiyama K, Shimizu M, et al. Nanoscale, 2020, 12(14), 7792. 111 Gauvin M, Yang N L, Yang Z J, et al. Nano Research, 2015, 8, 3480. 112 Qin X Y, Luo D, Xue Z J, et al. Advanced Materials, 2018, 30(9), 1706327.