Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21120161-12    https://doi.org/10.11896/cldb.21120161
  无机非金属及其复合材料 |
纳米粒子自组装超结构的制备及基于构效关系的性能
秦肖雲1,*, 邵文龙1, 田宽1, 姜利英2, 罗聃3,4,*
1 郑州轻工业大学材料与化学工程学院,郑州 450002
2 郑州轻工业大学电气信息工程学院,郑州 450002
3 北京纳米能源与系统研究所,北京 101400
4 中国科学院大学纳米科学与技术学院,北京 100049
Preparation of Self-assembled Nanoparticles Superstructures and Their Properties Based on Structure-Activity Principle
QIN Xiaoyun1,*, SHAO Wenlong1, TIAN Kuan1, JIANG Liying2, LUO Dan3,4,*
1 School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2 School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
3 Beijing Institute of Nanoenergy and Nanosystems, Beijing 101400, China
4 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 43258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着对纳米粒子形貌和尺寸的控制越来越成熟,由高度单分散的纳米粒子(粒径偏差不大于5%)自组装而成具有规则晶格结构的超结构成为可能,并受到越来越多的关注。纳米材料学家通过“人造块体”的概念来构建纳米粒子自组装超结构,以纳米粒子为“人造原子”,通过粒子间的相互作用力搭建具有不同堆积模式的超晶结构。作为一种“自下而上”构建材料的制备方法,纳米粒子的自组装技术可以实现材料器件的大面积制备。构效关系是自然界中广泛存在的一项基本原则,指的是物质的组成结构与其物理化学性能之间的关系。基于不同组装结构基元、不同堆积模式下的纳米粒子自组装超结构展现出区别于单分散纳米粒子和块体材料的特殊集体性能,在光学、电学、催化、生物医药等领域展现出广阔的应用前景。基于纳米粒子间的相互作用并充分利用外界环境,科研工作者们发展了一系列实现纳米粒子自组装的方法,从材料性能角度出发设计组装基元和堆积结构,构筑自组装超结构以实现功能定制化的集体性能。
本文总结了纳米粒子自组装超结构的组装机理以及组装方法,并从构效关系入手,讨论了纳米粒子自组装超结构与材料的光学、电学、磁学、力学集体性能之间的联系,对近年来纳米粒子自组装超结构方面的研究进展进行了综述,重点论述了构效关系在纳米粒子自组装超结构中的体现。通过改变纳米粒子自组装超结构的组成元素和搭建结构,各类纳米制造技术可以调节纳米材料的物理化学性能,以适应各个应用领域的不同需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦肖雲
邵文龙
田宽
姜利英
罗聃
关键词:  纳米粒子  自组装  超结构  构效关系  集体性能    
Abstract: With the mature control of morphology and size of nanoparticles, the superstructure can be self-assembled with regular lattice structure from highly monodispersed nanoparticles (size deviation ≤5%). Nanomaterials scientists use the concept of ‘artificial solids’ to construct self-assembled superstructures, by exploiting nanoparticles as ‘artificial atoms’ in building supercrystals with different stacking modes through interactions between the adjacent particles. As a ‘bottom-up’ fabrication approach, the self-assembly method can achieve fabrication of material devices in large area. Structure-activity relationship is a basic principle that widely exists in nature. It refers to the relationship between the composition and structure of a substance and its physical and chemical properties. The self-assembled superstructures of nanoparticles based on different constructed bricks and stacking modes show special collective properties different fromboth individual nanoparticles and their bulk materials, and show broad application prospects in optics, electricity, catalysis, biomedicine and other fields. Based on the interaction between nanoparticles and taking full advantage of the external environment, researchers have developed a series of self-assembly methods to construct superstructures with customized performance, which is realized by designing the building blocks and stacking structures from the point of view of desired material properties.
This review offers a retrospection of the self-assembled mechanism, methods, and research progress in this area, and provides elaborate descriptions about how the assembled superstructures take effects on their optical, electric, magnetic, and mechanical properties. It is focused on the embodiment of properties arising from the structure-activity principle in the self-assembled superstructures. By changing the components and structures of the self-assembled nanoparticles superstructures, different physical and chemical properties can be obtained to adapt to different application fields.
Key words:  nanoparticle    self-assembly    superstructure    structure-activity    collective property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  O648  
基金资助: 国家自然科学基金(21904120;62073299;51902344);河南省重点研发与推广专项(科技攻关)项目(212102310858);中原科技创新领军人才项目(224200510026);郑州轻工业大学博士启动资金(2018BSJJ022)
通讯作者:  *秦肖雲,郑州轻工业大学讲师、硕士研究生导师。2010年唐山师范学院应用化学专业本科毕业,2013年西华师范大学物理化学专业硕士毕业,2017年中国科学院化学研究所分析化学专业博士毕业。2018年3月入职郑州轻工业大学工作至今,目前主要从事纳米粒子自组装及电化学传感方面的研究工作。发表SCI论文20余篇,包括Adv.Mater.、Adv.Funct.Mater.、Nano Today、Anal.Chem.、Electrochem.Commun.等。xyqin@zzuli.edu.cn
罗聃,青年研究员,博士研究生导师。2008年毕业于北京大学药学院,获理学学士学位,2013年毕业于北京大学生物物理系,获理学博士学位。2013年8月—2015年3月在中国科学院化学研究所工作担任助理研究员;2015年3月—2021年3月就职于中国石油大学(北京),先后担任助理研究员、副研究员、新能源科学与工程系副主任、生物质能源党支部书记;2021年3月入职中国科学院北京纳米能源与系统研究所。主要从事高性能纳米材料的设计与合成、仿生纳米界面的开发、纳米材料在生物调控及能源转化应用的研究,并开展纳米发电机在药物递送及组织修复领域的研究。已在Nat.Commun.、J.Am.Chem.Soc.、Adv.Mater.、Adv.Funct.Mater.、Nano Energy、ACS Nano、Small、J.Mater.Chem.A、Adv.Healthc.Mater.等国际权威学术期刊发表SCI论文30余篇。luodan@binn.cas.cn   
引用本文:    
秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
QIN Xiaoyun, SHAO Wenlong, TIAN Kuan, JIANG Liying, LUO Dan. Preparation of Self-assembled Nanoparticles Superstructures and Their Properties Based on Structure-Activity Principle. Materials Reports, 2023, 37(17): 21120161-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120161  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21120161
1 Urban J J, Talapin D V, Shevchenko E V, et al. Nature Materials, 2007, 6, 115.
2 Luo D, Yan C, Wang T. Small, 2015, 11(45), 5984.
3 Qin X Y, Wang T, Jiang L. National Science Review, 2017, 4(5), 672.
4 Li C, Qin X Y, Zhang Z H, et al. Nano Today, 2022, 42, 101354.
5 Shevchenko E V, Talapin D V, Kotov N A, et al. Nature, 2006, 439, 55.
6 Wang T, Wang X R, LaMontagne D, et al. Journal of the American Chemical Society, 2012, 134(44), 18225.
7 Wang T, Zhuang J Q, Lynch J, et al. Science, 2012, 338(6105), 358.
8 Luo D, Qin X Y, Song Q, et al. Advanced Functional Materials, 2017, 27(44), 1701982.
9 Xue Z J, Li X, Chen X Y, et al. Advanced Materials, 2020, 32(37), 2002004.
10 Qiao X Z, Su B S, Liu C, et al. Advanced Materials, 2018, 30(5), 1702275.
11 Macfarlane R J, Lee B, Jones M R, et al. Science, 2011, 334(6053), 204.
12 Auyeung E, Cutler J I, Macfarlane R J, et al. Nature Nanotechology, 2012, 7, 24.
13 Macfarlane R J, Jones M R, Lee B, et al. Science, 2013, 341(6151), 1222.
14 Girard M, Wang S Z, Du J S, et al. Science, 2019, 364(6446), 1174.
15 Gwo S, Chen H Y, Lin M H, et al. Chemical Society Reviews, 2016, 45(20), 5672.
16 Gavilán H, Kowalski A, Heinke D, et al. Particle & Particle Systems Characterization, 2017, 34(7), 1700094.
17 Xu H, Zhu X D, Sun K N, et al. Advanced Materials Interfaces, 2015, 2(15), 1500239.
18 Chen G Y, Du L, Du C Y, et al. Electrochemistry, 2017, 85(3), 133.
19 Chai S C, Cao X, Xu F R, et al. ACS Nano, 2019, 13(6), 7135.
20 Ogawa Y, Ando D, Sutou Y, et al. Science, 2016, 353(6297), 368.
21 Hueckel T, Hocky G M, Palacci J, et al. Nature, 2020, 580, 487.
22 Wang S Y, Xia F, Li F Y, et al. Scientia Sinica Chimica, 2019, 49(9), 1168(in Chinese).
王淑颖, 夏凡, 李方园, 等. 中国科学:化学, 2019, 49(9), 1168.
23 Shi W X, Lee Y H, Ling X Y, et al. Nanoscale, 2017, 9(31), 11239.
24 Shi Q X, Javorskis T, Bergquist K E, et al. Nature Communications, 2017, 8, 14943.
25 Du C F, Dinh K N, Liang Q H, et al. Advanced Energy Materials, 2018, 8(26), 1801127.
26 Caswell K K, Wilson J N, Bunz U H F, et al. Journal of the American Chemical Society, 2003, 125(46), 13914.
27 Nakata K, Hu Y, Uzun O, et al. Advanced Materials, 2008, 20(22), 4294.
28 Barry E, Dogic Z. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23), 10348.
29 Cheng W L, Hartman M R, Smilgies D M, et al. Angewandte Chemie-International Edition, 2010, 49(2), 380.
30 Quan Z W, Xu H W, Wang C Y, et al. Journal of the American Chemical Society, 2014, 136(4), 1352.
31 Hu Y X, Sun Y G. Journal of the American Chemical Society, 2013, 135(6), 2213.
32 Yan Y, Wang R, Qiu X H, et al. Journal of the American Chemical Society, 2010, 132(34), 12006.
33 Zheng Y H, Zheng X, Liu B, et al. Electrochimica Acta, 2020, 331, 135392.
34 Mundoor H, Senyuk B, Smalyukh I I. Science, 2016, 352(6281), 69.
35 Zeng Z P, Li Y B, Chen S F, et al. Journal of Materials Chemistry A, 2018, 6(24), 11154.
36 Pillai P P, Kowalczyk B, Grzybowski B A. Nanoscale, 2016, 8(1), 157.
37 Jiang K Y, Weng Y L, Guo S Y, et al. Nanoscale, 2017, 9(43), 16922.
38 Sui C H, Wang C, Wang Z Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 529, 425.
39 Sankaewtong K, Lei Q L, Ni R. Soft Matter, 2019, 15(15), 3104.
40 Wang H, Liu Y X, Chen Z Y, et al. Science Advances, 2020, 6(2), eaay1438.
41 Ahniyaz A, Sakamoto Y, Bergstrom L. Proceedings of the National Aca-demy of Sciences of the United States of America, 2007, 104(45), 17570.
42 Wan L, Song H Y, Chen X, et al. Advanced Materials, 2018, 30(25), 1707515.
43 Currie E P K, Norde W, Stuart M A C. Advances in Colloid and Interface Science, 2003, 100-102, 205.
44 Lim R Y H, Deng J. ACS Nano, 2009, 3(10), 2911.
45 Akcora P, Liu H J, Kumar S K, et al. Nature Materials, 2009, 8, 354.
46 Fan Z X, Bosman M, Huang X, et al. Nature Communications, 2015, 6, 7684.
47 Men D, Zhang T T, Hou L W, et al. ACS Nano, 2015, 9(11), 10852.
48 Zhang W, Lu X L, Mao J L, et al. Angewandte Chemie-International Edition, 2017, 56(47), 15014.
49 Wang X M, Shao Y, Jin P F, et al. Macromolecules, 2018, 51(3), 1110.
50 Zeng C J, Liu C, Chen Y X, et al. Journal of the American Chemical Society, 2016, 138(28), 8710.
51 Li Q, Russell J C, Luo T Y, et al. Nature Communications, 2018, 9, 3871.
52 Li P H, Li Y, Zhou Z K, et al. Advanced Materials, 2016, 28(13), 2511.
53 Lemineur J F, Schuermans S, Marae-Djouda J, et al. Journal of Physical Chemistry C, 2016, 120(16), 8883.
54 Li R P, Zhang J, Tan R, et al. Nano Letters, 2016, 16(4), 2792.
55 Agthe M, Wetterskog E, Bergstrom L. Langmuir, 2017, 33(1), 303.
56 Dong A G, Chen J, Vora P M, et al. Nature, 2010, 466, 474.
57 Mao M, Zhou B B, Tang X H, et al. Chemistry-A European Journal, 2018, 24(16), 4094.
58 Pan S, He L Z, Peng J, et al. Angewandte Chemie-International Edition, 2016, 55(30), 8686.
59 Wei W Q, Liu D, Wei Z, et al. ACS Catalysis, 2017, 7(1), 652.
60 Li H S, Shi J J, Deng J, et al. Advanced Materials, 2020, 32(23), 1907396.
61 Abdilla A, Dolinski N D, Roos P D, et al. Journal of the American Chemical Society, 2020, 142(4), 1667.
62 Zhuang J Q, Wu H M, Yang Y G, et al. Angewandte Chemie-International Edition, 2008, 47(12), 2208.
63 Zhuang J Q, Shaller A D, Lynch J, et al. Journal of the American Chemical Society, 2009, 131(17), 6084.
64 Zhuang J Q, Wu H M, Yang Y A, et al. Journal of the American Chemical Society, 2007, 129(46), 14166.
65 Huang X, Zhu J L, Ge B H, et al. Journal of the American Chemical Society, 2019, 141(7), 3198.
66 Wang Z W, Bian K F, Nagaoka Y, et al. Journal of the American Chemical Society, 2017, 139(41), 14476.
67 Shi D W, Wang Z G, Xu J K, et al. Chinese Science Bulletin, 2013, 58(24), 2367(in Chinese).
石党委, 王振刚, 徐景坤, 等. 科学通报, 2013, 58(24), 2367.
68 Ross M B, Ku J C, Vaccarezza V M, et al. Nature Nanotechology, 2015, 10, 453.
69 Park D J, Zhang C, Ku J C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 112(4), 977.
70 Jones M R, Seeman N C, Mirkin C A. Science, 2015, 347(6224), 1260901.
71 Wei W B, Bai F, Fan H Y. iScience, 2019, 11, 272.
72 Zhang S J, Pelligra C I, Feng X D, et al. Advanced Materials, 2018, 30(18), 1705794.
73 Wang P P, Qiao Q, Zhu Y M, et al. Journal of the American Chemical Society, 2018, 140(29), 9095.
74 Singh G, Chan H, Baskin A, et al. Science, 2014, 345(6201), 1149.
75 Wang N, Evans J S, Liu Q K, et al. Optical Materials Express, 2015, 5(5), 1065.
76 Boehm S J, Lin L, Betancourt K G, et al. Langmuir, 2015, 31(21), 5779.
77 Kundu P K, Samanta D, Leizrowice R, et al. Nature Chemistry, 2015, 7, 646.
78 Wu H M, Wang Z W, Fan H Y. Journal of the American Chemical Society, 2014, 136(21), 7634.
79 Li T T, Wang B W, Ning J, et al. Matter, 2019, 1(4), 976.
80 Correa-Duarte M A, Perez-Juste J, Sanchez-Iglesias A, et al. Angewandte Chemie-International Edition, 2005, 44(28), 4375.
81 Matricardi C, Hanske C, Garcia-Pomar J L, et al. ACS Nano, 2018, 12(8), 8531.
82 Feng J G, Song Q, Zhang B, et al. Advanced Materials, 2017, 29(46), 1703143.
83 Liu W Y, Halverson J, Tian Y, et al. Nature Chemistry, 2016, 8, 867.
84 Tian Y, Zhang Y G, Wang T, et al. Nature Materials, 2016, 15, 654.
85 Xue W T, Di Z H, Zhao Y, et al. Chinese Chemical Letters, 2019, 30(4), 899.
86 Liu B, Zhang J F, Li L L. Chemistry-A European Journal, 2019, 25(59), 13452.
87 Zhang J F, Di Z H, Yan H S, et al. Nano Letters, 2021, 21(7), 2793.
88 Jia R K, Wang Y N, Shang Y X, et al. Chinese Science Bulletin, 2018, 63(35), 3772(in Chinese).
贾若琨, 王园宁, 尚颖旭, 等. 科学通报, 2018, 63(35), 3772.
89 Zang X N, Chen W S, Zou X L, et al. Advanced Materials, 2018, 30(50), 1805188.
90 Li Y F, Prince E, Cho S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9), 2137.
91 Gao L, Gao H B, Lin J P, et al. Macromolecules, 2020, 53(20), 8992.
92 Liu D L, Zhou F, Li C C, et al. Angewandte Chemie-International Edition, 2015, 54(33), 9596.
93 Chen C F, Tzeng S D, Chen H Y, et al. Journal of the American Chemical Society, 2008, 130(3), 824.
94 Peng B, Li G Y, Li D H, et al. ACS Nano, 2013, 7(7), 5993.
95 Avci C, Imaz I, Carné-Sánchez A. Nature Chemistry, 2018, 10, 78.
96 Kim H, Ge J P, Kim J, et al. Nature Photonics, 2009, 3, 534.
97 Ge J P, He L, Goebl J, et al. Journal of the American Chemical Society, 2009, 131(10), 3484.
98 Ge J P, Yin Y D. Advanced Materials, 2008, 20(18), 3485.
99 Li J, Wang Y C, Zhou T, et al. Journal of the American Chemical Society, 2015, 137(45), 14305.
100 Feng J J, He L L, Fang R, et al. Journal of Power Sources, 2016, 330, 140.
101 Aurang Z G S M, Lin H F, Zulfiqar M, et al. Small, 2017, 13(24), 1700250.
102 Li M Z, Deng Y W, Wu G H, et al. Aggregate, 2021, 2(2), e17.
103 Liu Q D, He P L, Yu H D, et al. Science Advances, 2019, 5(7), eaax1081.
104 Qin X Y, Zhang J, Shao W L, et al. Electrochemistry Communications, 2021, 133, 107161.
105 Lisiecki I, Pileni M P. Comptes Rendus Chimie, 2009, 12(1-2), 235.
106 Fleutot S, Nealon G L, Pauly M, et al. Nanoscale, 2013, 5(4), 1507.
107 Farrell D, Cheng Y H, McCallum R W, et al. The Journal of Physical Chemistry B, 2005, 109(28), 13409.
108 Zhang H T, Bao N N, Yuan D, et al. Physical Chemistry Chemical Physics, 2013, 15(35), 14689.
109 Yang Y C, Wang B W, Shen S D, et al. Journal of the American Che-mical Society, 2018, 140(44), 15038.
110 Sawano K, Tsukiyama K, Shimizu M, et al. Nanoscale, 2020, 12(14), 7792.
111 Gauvin M, Yang N L, Yang Z J, et al. Nano Research, 2015, 8, 3480.
112 Qin X Y, Luo D, Xue Z J, et al. Advanced Materials, 2018, 30(9), 1706327.
[1] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[2] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[3] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[4] 刘恒昌, 陈凯. 两面神胶束的构筑及应用[J]. 材料导报, 2023, 37(10): 21120086-8.
[5] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[6] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[7] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[8] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[9] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[10] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[11] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[12] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[13] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[14] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[15] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed