Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22090282-9    https://doi.org/10.11896/cldb.22090282
  无机非金属及其复合材料 |
石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能
应敬伟1,2,*, 苏飞鸣1, 席晓莹1, 刘剑辉1
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学双碳科学与技术研究院, 南宁 530004
Chloride Ion Diffusion and Sulfate Resistance of Graphene Nanosheet Plate Reinforced Cement Mortar
YING Jingwei1,2,*, SU Feiming1, XI Xiaoying1, LIU Jianhui1
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Institute of Science and Technology for Carbon Peak and Neutrality, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 10865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了石墨烯纳米片(GNP)对水泥砂浆抗氯离子扩散性能和抗硫酸盐侵蚀性能的影响,并采用热重分析法、压汞分析法、X射线衍射、扫描电镜和能谱分析对GNP复合水泥砂浆的微观形貌和水化产物类别进行了表征,解释了GNP增强水泥砂浆抗氯离子扩散性能和抗硫酸盐侵蚀性能的机理。结果表明:与普通水泥砂浆相比,掺入0.1%水泥质量的GNP后,水泥砂浆的28 d抗压、抗折强度分别提高了11.1%和12.7%,表面氯离子浓度和扩散系数分别减小了36.8%和11.3%,经硫酸盐侵蚀后质量损失率为0.44%,抗蚀系数提升至0.9;GNP对水泥水化的产物类别没有影响,但GNP可以促进水泥的水化反应并细化水泥砂浆中的孔径;GNP作为水泥中的纳米添加材料能够填充在水泥熟料附近,使水泥砂浆的微观结构更为密实,且GNP较大的比表面积和二维板状结构也可以成为腐蚀离子的物理屏障。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
应敬伟
苏飞鸣
席晓莹
刘剑辉
关键词:  石墨烯纳米片  强度  氯离子扩散  硫酸盐侵蚀  微观结构    
Abstract: The influence of graphene nanosheet plate (GNP) on chloride ion diffusion resistance and sulfate corrosion resistance of cement mortar was studied in this work. The micro-morphology and classification of hydration products of GNP composite cement mortar were characterized by thermogravimetry, mercury intrusion analysis, X-ray diffraction, scanning electron microscopy and energy spectrum analysis, and the mechanism of GNP enhancing chloride ion diffusion resistance and sulfate corrosion resistance of cement mortar was explained. The results show that compared with common cement mortar, the compressive and flexural strength of cement mortar increased by 11.1% and 12.7%, respectively, after adding 0.1% GNP by 28 days, and the apparent chloride ion concentration and diffusion coefficient decreased by 36.8% and 11.3%, respectively. GNP has no effect on the product category of cement hydration, but GNP can promote the hydration reaction of cement and refine the pore size in cement mortar; as a nano additive in cement, GNP can be filled near cement clinker, increasing the compact of the cement mortar, and the large specific surface area and two-dimensional plate structure of GNP can also serve as a physical barrier for corrosive ions.
Key words:  graphene nanosheet plate    strength    chloride ion diffusion    sulfate attack    microstructure
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU528.59  
基金资助: 国家自然科学基金(52168015;51768005);广西科技计划项目(2023GXNSFAA026472; AB16380030)
通讯作者:  * 应敬伟,广西大学土木建筑工程学院副教授、硕士研究生导师。2006年平顶山工学院土木工程专业本科毕业,2009年广西大学结构工程专业硕士毕业,2013年同济大学结构工程专业博士毕业。目前主要从事新型结构材料、混凝土耐久性等方面的研究工作。发表论文30余篇,包括《土木工程学报》《建筑材料学报》、ASCE-Journal of Materials in Civil Engineering、Construction and Building Materials等。yingjingwei@gxu.edu.cn   
引用本文:    
应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
YING Jingwei, SU Feiming, XI Xiaoying, LIU Jianhui. Chloride Ion Diffusion and Sulfate Resistance of Graphene Nanosheet Plate Reinforced Cement Mortar. Materials Reports, 2024, 38(9): 22090282-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090282  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22090282
1 Gong J X, Zhao G F. Industrial Construction,2000(5),1(in Chinese).
贡金鑫, 赵国藩. 工业建筑, 2000(5),1.
2 Yang H, Cui H, Tang W, et al. Composites Part A: Applied Science and Manufacturing, 2017, 102, 273.
3 Sagar R V, Prasad B K R, Kumar S S. Cement and Concrete Research, 2012, 42(8),1094.
4 Taylor H F W. Advanced Cement Based Materials,1993, 1(1),38.
5 Young R J, Kinloch I A, Gong L, et al. Composites Science and Technology, 2012, 72(12), 1459.
6 Norhasri M S M, Hamidah M S, Fadzil A M. Construction and Building Materials,2017, 133,91.
7 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2),339 (in Chinese).
程志海,杨森,袁小亚. 复合材料学报, 2021, 38(2), 339.
8 Wang Q, Li S Y, Wang J,et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 163 (in Chinese).
王琴,李时雨,王健,等. 硅酸盐学报, 2018, 46(2), 163.
9 Krystek M, Ciesielski A, Samorì P. Advanced Functional Materials, 2021, 31(27), 2101887.
10 Basquiroto De Souza F, Yao X, Gao W, et al. Science Bulletin, 2022, 67(1), 5.
11 Chuah S, Pan Z, Sanjayan J G, et al. Construction and Building Mate-rials, 2014, 73,113.
12 Liu C, Huang X, Wu Y, et al. Nanotechnology Reviews, 2020, 9(1), 155.
13 Lin Y, Du H. Construction and Building Materials,2020, 265, 120312.
14 Devi S C, Khan R A. Journal of Building Engineering, 2020, 32, 101800.
15 Liu C, Hunag X, Wu Y, et al. Cement and Concrete Composites. 2022, 130, 104508.
16 Lv S, Zhang J, Zhu L, et al. Materials,2016, 9(11),924.
17 Shamsaei E, de Souza F B, Yao X, et al. Construction and Building Materials,2018, 183, 642.
18 Du H, Pang S D. Cement and Concrete Research,2015, 76, 10.
19 Massion C, Lu Y, Crandall D, et al. Cement and Concrete Composites,2022, 133,104726.
20 Lavagna L, Massella D, Priola E, et al. Cement and Concrete Composites,2021, 115, 103851.
21 Wang B, Jiang R, Wu Z. Nanomaterials,2016, 6(11),200.
22 Jing G, Ye Z, Lu X, et al. Advances in Cement Research, 2017, 29(2),63.
23 Lv S, Ma Y, Qiu C, et al. Construction and Building Materials, 2013, 49,121.
24 Li G, Yuan J B, Zhang Y H, et al. Composites Part A: Applied Science and Manufacturing, 2018, 114,188.
25 Baomin W, Shuang D. Construction and Building Materials,2019, 228, 116720.
26 Ranjbar N, Mehrali M, Mehrali M, et al. Cement and Concrete Research,2015, 76, 222.
27 Du H, Gao H J, Pang S D. Cement and Concrete Research,2016, 83,114.
28 Long G C, Chen S P, Xie Y J. Journal of Building Materials, 2008(3),328(in Chinese).
龙广成,陈书苹,谢友均. 建筑材料学报,2008(3),328.
29 Androutsopoulos G P, Salmas C E. Chemical Engineering Communications, 2000, 181, 137.
30 Wu Z W. Journal of the Chinese Ceramic Society,1979(3),262(in Chinese).
吴中伟. 硅酸盐学报, 1979(3),262.
31 Luo M Y, Zeng Q, Pang X Y, et al. Journal of the Chinese Ceramic So-ciety,2013, 41(5),597(in Chinese).
罗明勇,曾强,庞晓贇,等.硅酸盐学报, 2013, 41(5),597.
32 Monteiro P, Mehta P K. Concrete: microstructure, properties and mate-rials, McGraw-hill, 2006.
33 Du H, Pang S D. Construction and Building Materials, 2018, 167, 403.
34 Shi C J, Yuan Q. Testing and analysis methods for cement-based mate-rials, China Architecture & Building Press, China, 2018, pp.187(in Chinese)
史才军,元强. 水泥基材料测试分析方法, 中国建筑工业出版社, 2018, pp.187.
35 Jing G, Wu J, Lei T, et al. Construction and Building Materials, 2020, 248, 118699.
36 Hu M, Guo J, Fan J, et al. Construction and Building Materials, 2019, 216, 128.
37 Wang B, Zhao R. Construction and Building Materials,2018, 161, 715.
38 John E, Matschei T, Stephan D. Cement and Concrete Research,2018, 113, 74.
39 Rahhal V, Cabrera O, Delgado A, et al. Journal of Thermal Analysis and Calorimetry,2010, 100(1), 57.
40 Zhang X M, Liu R J, Dai L, et al. Journal of Functional Materials, 2023, 54(4),4087(in Chinese).
张雪梅,刘荣桂,戴丽,等.功能材料, 2023,54(4),4087.
41 Cao W Q, Wei Z Q, Liu C, et al. Journal of Functional Materials, 2024, 55 (1),1111(in Chinese).
曹蔚琦, 魏致强, 刘川, 等. 功能材料, 2024, 55 (1),1111.
42 Liu J, Fu J, Yang Y, et al. Construction and Building Materials, 2019, 199, 1.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[11] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[12] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[13] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[14] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[15] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed