1 Key Laboratory for Resilient Infrastructures of Coastal Cites, MOE, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China 2 Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA 3 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
Abstract: Organo-phosphonate is a kind of strong metal chelating agent, which shows great potential in the stabilization of heavy metal ions in solution environment. However, the current understanding of the stabilizing effect of organic-phosphonate on heavy metal ions in cement-based materials is still limited. The effect of tetrasodium hydroxyethylidene diphosphonate (HEDP-4Na) and curing environment with alternating temperature and humidity on lead ions stabilization of alkali-activated slag-based materials (AASM) were studied, and the phase compositions, pore structures and micro morphology were analyzed in this study. The results show that HEDP-4Na significantly improved the lead stabilization of AASM. Under standard curing condition, the 28 d lead ions leaching concentration of AASM with 0.3% HEDP-4Na decreased by 34.6% compared with the control group without HEDP-4Na, which was related to HEDP-4Na promoting the formation of AASM hydration products with low Ca/Si ratio, enhancing the ability of hydration products to adsorb, encapsulate lead ions and synthesize C-Pb-S-H, and improving the pore structures of AASM. Under the curing environment with alternating temperature and humidity, the deterioration of AASM was accelerated, resulting in the decrease of the lead stabilization. However, the lead ions leaching concentration of AASM with HEDP-4Na was still lower than that without HEDP-4Na. The decrease of the lead stabilization under the curing environment with alternating temperature and humidity was mainly related to the inhibition of the formation of AASM hydration products and the increase of matrix porosity.
作者简介: 龙武剑,深圳大学土木与交通工程学院教授、博士研究生导师。2000年法国国立图卢兹第三大学建筑工程专业本科毕业,2003年法国高等师范大学建筑材料与结构专业硕士毕业,2008年加拿大舍布鲁克大学土木工程专业博士毕业。目前主要从事高性能水泥基材料的研究,近五年以第一或通信作者身份在Cement and Concrete Composites、ACI Materials Journal、Composite Part B、Green Chemistry、Carbon等国际知名期刊发表学术论文80余篇,出版学术专著4部。
引用本文:
龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
LONG Wujian, WU Zhuorui, WEI Jingjie, DONG Biqin, ZHANG Jinrui, FANG Changle. The Enhanced Lead(Ⅱ) Ions Stabilization of Alkali-activated Slag-based Materials with Appropriate Addition of Phosphonate. Materials Reports, 2023, 37(13): 21110095-8.
1 Wang D Q, He W, Wang Q, et al. Journal of the Chinese Ceramic Society, 2018, 46(5), 683 (in Chinese). 王登权, 何伟, 王强, 等. 硅酸盐学报, 2018, 46(5), 683. 2 Yang L Y, Wei T C, Li S W, et al. Journal of Hazardous Materials, 2021, 412, 125176. 3 Long W J, Gu Y C, Zheng D, et al. Journal of Cleaner Production, 2018, 192, 151. 4 Lee D J. Chemosphere, 2007, 66(9), 1727. 5 Mijno V, Catalan L J J, Martin F, et al. Journal of Colloid and Interface Science, 2004, 280(2), 465. 6 Wang X, Liu J, Wang L, et al. Bulletin of the Chinese Ceramic Society, 2012, 31(5), 1039 (in Chinese). 王昕, 刘晶, 汪澜, 等. 硅酸盐通报, 2012, 31(5), 1039. 7 Lee D J, Swarbrick G, Waite T D. Cement and Concrete Research, 2005, 35(6), 1027. 8 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295. 9 Long W J, Ye T H, Xing F, et al. Cement and Concrete Composites, 2020, 114, 11. 10 Ostovari H, Mueller L, Skocek J, et al. Environmental Science and Technology, 2021, 55(8), 5212. 11 Andrew R M. Earth System Science Data, 2018, 10(1), 195. 12 Lee J, Lee T, Jeong J, et al. Construction and Building Materials, 2021, 267, 15. 13 Amran M, Murali G, Khalid N H A, et al. Construction and Building Materials, 2021, 272, 121942. 14 Mohamed O A. Materials, 2019, 12(8), 1198. 15 Zheng W Z, Zhou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28 (in Chinese). 郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28. 16 Nikolic V, Komljenovic M, Dzunuzovic N, et al. Journal of Hazardous Materials, 2018, 350, 98. 17 Ye J Y, Zhang W S, Shi D. Journal of the Chinese Ceramic Society, 2017, 45(8), 1101 (in Chinese). 叶家元, 张文生, 史迪. 硅酸盐学报, 2017, 45(8), 1101. 18 Conte T, Plank J. Cement and Concrete Research, 2019, 116, 95. 19 Gu Y M, Fang Y H, Gong Y F, et al. Materials Research Innovations, 2014, 18, 829. 20 Wei X B, Li D Q, Ming F, et al. Construction and Building Materials, 2021, 269, 14. 21 Zahid M, Shafiq N, Isa M H, et al. Journal of Cleaner Production, 2018, 194, 483. 22 Li B X, Lyu X D, Zhang J F. Journal of Building Materials, 2016, 19(3), 417 (in Chinese). 李北星, 吕兴栋, 张剑峰. 建筑材料学报, 2016, 19(3), 417. 23 Ramachandran V S, Lowery M S, Wise T, et al. Materials and Structures, 1993, 26(161), 425. 24 Rickert J, Thielen G. Cement Concrete and Aggregates, 2004, 26(2), 92. 25 Kiiashko A, Chaouche M, Frouin L. Cement and Concrete Composites, 2021, 119, 13. 26 Liu M. Effects and related mechanisms of polycarboxylate superplasticizers on cement hydration. Master's Thesis, Wuhan University of Technology, China, 2015 (in Chinese). 刘明. 聚羧酸减水剂对水泥水化的影响及相关机理研究. 硕士学位论文, 武汉理工大学, 2015. 27 Li L H, Tian B, Han G S, et al. Journal of Building Materials, 2020, 23(2), 247 (in Chinese). 李立辉, 田波, 韩根生, 等. 建筑材料学报, 2020, 23(2), 247. 28 Lyu X D, Wang X B, Li B X. Materials Reports, 2020, 34(15), 15184 (in Chinese). 吕兴栋, 王学斌, 李北星. 材料导报, 2020, 34(15), 15184. 29 Barbieri L, Lancellotti I, Ponzoni C. Environmental Science and Pollution Research, 2014, 21(23), 13230. 30 Zhang H H, He P J, Zhang H, et al. Chinese Journal of Environmental Engineering, 2006, 7(11), 45 (in Chinese). 张后虎, 何品晶, 章骅, 等. 环境工程学报, 2006, 7(11), 45. 31 Huang S R, Cai H Y. Concrete, 1995(3), 31(in Chinese). 黄书荣, 蔡海瑜. 混凝土, 1995(3), 31. 32 Zhang J M. Structure and morphology of aluminum substituted calcium silicate hydrate. Master's Thesis, Wuhan University of Technology, China, 2011 (in Chinese). 张建明. 铝掺杂的水化硅酸钙结构及微观形貌研究. 硕士学位论文, 武汉理工大学, 2011. 33 Song F Y, Gu L, Zhu N W, et al. Chemosphere, 2013, 92(4), 344. 34 Yin C Y, Shaaban M G, Mahmud H B. Building and Environment, 2007, 42(2), 794. 35 Hong S Y, Glasser F P. Cement and Concrete Research, 2002, 32(7), 1101. 36 Keller I R B. The immobilisation of heavy metals and metalloids in cement stabilised wastes. Ph. D. Thesis, Swiss Federal Institute of Technology, Swiss, 2002. 37 Koplik J, Kalina L, Masilko J, et al. Materials, 2016, 9(7), 533. 38 Wang Y G, Han F L, Mu J Q. Construction and Building Materials, 2018, 160, 818. 39 Browning F H, Fogler H S. Langmuir, 1996, 12(21), 5231. 40 Savija B, Lukovic M. Construction and Building Materials, 2016, 117, 285. 41 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(3), 417.