Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21110083-7    https://doi.org/10.11896/cldb.21110083
  高分子与聚合物基复合材料 |
玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究
尹升华1,2,*, 曹永1,2, 吴爱祥1,2, 侯永强1,2, 白龙剑1,2
1 北京科技大学土木与资源工程学院,北京100083
2 金属矿山高效开采与安全教育部重点实验室,北京 100083
Study on Mechanics and Flow Behavior of Glass Fiber Reinforced Cemented Sulfur Tailings Backfill
YIN Shenghua1,2,*, CAO Yong1,2, WU Aixiang1,2, HOU Yongqiang1,2, BAI Longjian1,2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory of High-efficient Mining and Safety of Metal Mines, Ministry of Education, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11651KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对含硫尾砂胶结充填体的力学性能劣化特性,通过一系列室内试验对含硫尾砂胶结充填体的力学及流动性能进行了详细研究,并提出通过添加纤维改善含硫尾砂胶结充填体的力学性能。结果表明:料浆流动度随着硫含量的增加基本遵循二次函数递增规律;料浆流动度随着纤维含量的增加呈指数函数递减规律,但纤维长度的改变不会对料浆的流动度产生显著的影响;含硫尾砂胶结充填体的抗压、抗拉强度均随着纤维含量的增加呈先增大后减小的趋势,并都在纤维含量为0.6%时达到最大值;此外,纤维长度的增加也有利于提高含硫尾砂胶结充填体的抗压、抗拉强度,且纤维对抗拉强度的改善效果明显优于对抗压强度的改善效果;添加玻璃纤维不仅能够显著提高充填体的抗压强度,而且能够抑制充填体的强度劣化;微观结构测试表明纤维能够有效阻止孔隙和裂隙的产生和扩展,从而达到提高充填体力学性能及抑制充填体后期强度劣化的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹升华
曹永
吴爱祥
侯永强
白龙剑
关键词:  纤维长度  纤维含量  玻璃纤维  力学性能  流动性能  微观结构    
Abstract: In view of the particularity of the physical properties of cemented sulfur tailings backfill, the physical properties and flow properties of cemented sulfur tailings backfill (CSTB) were studied in detail through a series of laboratory tests and it was proposed to improve the physical pro-perties of CSTB by adding glass fiber. The results show that slurry fluidity basically follows the quadratic function increasing law with the increase of sulfur content. The fluidity of slurry decreases exponentially with the increase of fiber content, but the change of fiber length has no significant effect on the fluidity of slurry. The compressive strength and tensile strength of the cemented sulfur tailings backfill increased first and then decreased with the increase of fiber content, and both reached the maximum value when the fiber content was 0.6%. In addition, the increase of fiber length is also beneficial to improve the compressive strength and tensile strength of cemented sulfur tailings backfill and the improvement effect of fiber on tensile strength is obviously better than that of compressive strength. Moreover, the addition of fiber can not only significantly improve the compressive strength of the cemented sulfur tailings backfill, but also inhibit the strength deterioration of the cemented sulfur tailings backfill. The microstructure test shows that the fiber can effectively prevent the formation and expansion of pores and cracks, so as to improve the mechanical properties of CSTB and inhibit the strength deterioration of CSTB in the later stage.
Key words:  fiber length    fiber content    glass fiber    mechanical property    flow performance    microstructure
发布日期:  2023-07-10
ZTFLH:  TD853  
基金资助: 国家自然科学基金重点项目(51734001);中央高校基本科研业务费专项资金(FRF-TP-18-003C1)
通讯作者:  *尹升华,北京科技大学土木与资源工程学院教授、博士研究生导师。2003年中南大学资源与安全工程学院采矿工程专业本科毕业,2006年中南大学资源与工程学院采矿工程专业硕士毕业,2010年北京科技大学采矿工程专业博士毕业后留校任教至今,目前主要从事溶浸采矿、金属矿高效开采及矿山岩体力学等方面的研究工作。发表论文100余篇,包括Construction and Building Mate-rials、International Journal of Minerals、Metallurgy and Materials、Bioresource Technology、Engineering Geology等。ustxsh@163.com   
引用本文:    
尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
YIN Shenghua, CAO Yong, WU Aixiang, HOU Yongqiang, BAI Longjian. Study on Mechanics and Flow Behavior of Glass Fiber Reinforced Cemented Sulfur Tailings Backfill. Materials Reports, 2023, 37(13): 21110083-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110083  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21110083
1 Men Y S, Chai J S. Journal of Safety Science and Technology, 2009, 5(1), 48 (in Chinese).
门永生, 柴建设. 中国安全生产科学技术, 2009, 5(1), 48.
2 Wang G F. Investigation on pollution of water and soil around sulfide-mine tailing dams and simulation study on soil erosion of chemical solution. Master's Thesis, Guangxi University, China, 2005(in Chinese).
王桂芳. 硫化矿尾矿库周围水土污染调查及化学溶液对土壤侵蚀影响的模拟研究.硕士学位论文, 广西大学, 2005.
3 Wu A X, Wang H J. Theory and technology of paste filling in metal mine, Science Press, China, 2015, pp.5(in Chinese).
吴爱祥, 王洪江. 金属矿膏体充填理论与技术, 科学出版社, 2015, pp.5.
4 Li W C. Characteristics and mechanism of sulphate effect on the early age properties of cemented paste backfill. Ph. D. Thesis, China University of Mining and Technology(Beijing), China, 2016(in Chinese).
李文臣. 硫酸盐对胶结充填体早期性能的影响及其机理研究. 博士学位论文, 中国矿业大学(北京), 2016.
5 Liu Y Q, Hou D D. Modern Mining, 2013, 29(11), 195 (in Chinese).
刘允秋, 侯大德. 现代矿业, 2013, 29(11), 195.
6 Wen K W, Peng L, Kang R H, et al. Mining Technology, 2016(4), 40 (in Chinese).
闻奎武, 彭亮, 康瑞海, 等. 采矿技术, 2016(4), 40.
7 Wang B, Zhang H Y, Dong X L, et al. Industrial Minerals & Processing, 2007, 36(10), 29 (in Chinese).
王宝, 张虎元, 董兴玲, 等. 化工矿物与加工, 2007, 36(10), 29.
8 Ayora C, Chinchon S, Aguado A, et al. Cement and Concrete Research, 1998, 28(4), 591.
9 Yin S H, Shao Y J, Wu A X, et al. Construction and Building Materials, 2018, 165, 138.
10 Chen X Z, Guo L J, Shi C X, et al. Metal Mine, 2019(4), 11 (in Chinese).
陈鑫政, 郭利杰, 史采星, 等. 金属矿山, 2019(4), 11.
11 Ji W M, Liang B, Wang K, et al. Non-Metallic Mines, 2017, 40(5), 38 (in Chinese).
冀文明, 梁冰, 王堃, 等. 非金属矿, 2017, 40(5), 38.
12 Guo J P, Qiang H, Wang X L, et al. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2019, 51(6), 859 (in Chinese).
郭进平, 强浩, 王小林, 等. 西安建筑科技大学学报(自然科学版), 2019, 51(6), 859.
13 Wang X M, Xue X L, Zhang Q L, et al. Journal of Central South University (Science and Technology), 2015, 46(10), 3767 (in Chinese).
王新民, 薛希龙, 张钦礼, 等. 中南大学学报(自然科学版), 2015, 46(10), 3767.
14 Yi X W, Ma G W, Fourie A. Geotextiles and Geomembranes, 2015, 43, 207.
15 Chen W H, Chen H Y, Qiao D P, et al. Journal of China Coal Society, 2019, 44(S2), 553.
16 Cheng H Y, Wu A X, Wang H J, et al. Chinese Journal of Engineering, 2017, 39(10), 1493 (in Chinese).
程海勇, 吴爱祥, 王洪江, 等. 工程科学学报, 2017, 39(10), 1493.
17 Cheng W H, Cheng H Y, Qiao D P, et al. Journal of China Coal Society, 2019, 44(S2), 553 (in Chinese).
程纬华, 程海勇, 乔登攀, 等. 煤炭学报, 2019, 44(S2), 553.
18 Jiang G Z, Wu A X, Li H, et al. Journal of Central South University (Science and Technology), 2018, 49(6), 1504 (in Chinese).
姜关照, 吴爱祥, 李红, 等. 中南大学学报(自然科学版), 2018, 49(6), 1504.
19 Dong Q, Liang B, Jia L F, et al. Construction and Building Materials, 2019, 200, 436.
20 Lang L, Jie X, Chao H, et al. Construction and Building Materials, 2020, 237, 117452.
21 Cao S, Yilmaz E, Song W D. Construction and Building Materials, 2019, 223, 44.
22 Chen X, Shi X Z, Zhou J, et al. Construction and Building Materials, 2018, 190, 211.
23 Xu W B, Li Q L, Tian M M. Chinese Journal of Engineering, 2019, 41(12), 1618 (in Chinese).
徐文彬, 李乾龙, 田明明. 工程科学学报, 2019, 41(12), 1618.
24 Zheng J J, Song Y, Wu C C, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(12), 73 (in Chinese).
郑俊杰, 宋杨, 吴超传, 等. 华中科技大学学报(自然科学版), 2019, 47(12), 73.
25 Zhou N, Du E B, Zhang J X, et al. Construction and Building Materials, 2021, 280, 122408.
26 Xue G L, Yilmaz E, Song W D, et al. Composites Part B, 2019, 172, 131.
27 Zhang Q F, Zhang C W, Yang L Y, et al. Journal of Railway Enginee-ring Society, 2019, 36(10), 12 (in Chinese).
张清峰, 张昌伟, 杨亮元, 等. 铁道工程学报, 2019, 36(10), 12.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed