Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21110095-8    https://doi.org/10.11896/cldb.21110095
  无机非金属及其复合材料 |
有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用
龙武剑1, 吴卓锐1, 韦经杰1,2, 董必钦1, 张津瑞3, 方长乐1,*
1 深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,滨海城市韧性基础设施教育部重点实验室,广东 深圳 518060
2 密苏里科技大学土木建筑和环境工程学院,美国 密苏里州罗拉 65409
3 天津大学水利工程仿真与安全国家重点实验室,天津 300072
The Enhanced Lead(Ⅱ) Ions Stabilization of Alkali-activated Slag-based Materials with Appropriate Addition of Phosphonate
LONG Wujian1, WU Zhuorui1, WEI Jingjie1,2, DONG Biqin1, ZHANG Jinrui3, FANG Changle1,*
1 Key Laboratory for Resilient Infrastructures of Coastal Cites, MOE, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
3 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 7628KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机膦酸盐是一种极强的金属螯合剂,在溶液环境中可有效固化重金属离子。然而,目前关于有机膦酸盐改性水泥基材料重金属离子固化性能的研究较少。本工作研究了羟基乙叉二膦酸四钠(HEDP-4Na)和温、湿度交替变化的养护环境对碱矿渣胶凝材料(Alkali-activated slag-based materials,AASM)铅离子固化性能的影响,并分析了其物相组成、孔隙结构和微观形貌。结果显示:HEDP-4Na显著提升了AASM的铅离子固化性能,当其掺量为0.3%时,标准养护至28 d的AASM铅离子浸出浓度相比未掺入HEDP-4Na的对照组降低了34.6%,这与HEDP-4Na促进了AASM低钙硅比水化产物的生成,提升了水化产物吸附、封裹铅离子并形成 C-Pb-S-H 的能力,改善了其微观孔隙结构有关;温、湿度交替变化养护环境下,AASM的劣化加速,导致其铅离子固化性能下降,但掺HEDP-4Na的AASM铅离子浸出浓度仍显著低于未掺入HEDP-4Na的对照组。温、湿度交替变化养护时铅离子固化性能下降主要与AASM水化产物的生成受抑制,以及基体孔隙率的提高有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
吴卓锐
韦经杰
董必钦
张津瑞
方长乐
关键词:  碱矿渣胶凝材料  有机膦酸盐  重金属  铅离子  固化机理  微观结构    
Abstract: Organo-phosphonate is a kind of strong metal chelating agent, which shows great potential in the stabilization of heavy metal ions in solution environment. However, the current understanding of the stabilizing effect of organic-phosphonate on heavy metal ions in cement-based materials is still limited. The effect of tetrasodium hydroxyethylidene diphosphonate (HEDP-4Na) and curing environment with alternating temperature and humidity on lead ions stabilization of alkali-activated slag-based materials (AASM) were studied, and the phase compositions, pore structures and micro morphology were analyzed in this study. The results show that HEDP-4Na significantly improved the lead stabilization of AASM. Under standard curing condition, the 28 d lead ions leaching concentration of AASM with 0.3% HEDP-4Na decreased by 34.6% compared with the control group without HEDP-4Na, which was related to HEDP-4Na promoting the formation of AASM hydration products with low Ca/Si ratio, enhancing the ability of hydration products to adsorb, encapsulate lead ions and synthesize C-Pb-S-H, and improving the pore structures of AASM. Under the curing environment with alternating temperature and humidity, the deterioration of AASM was accelerated, resulting in the decrease of the lead stabilization. However, the lead ions leaching concentration of AASM with HEDP-4Na was still lower than that without HEDP-4Na. The decrease of the lead stabilization under the curing environment with alternating temperature and humidity was mainly related to the inhibition of the formation of AASM hydration products and the increase of matrix porosity.
Key words:  alkali-activated slag-based material    phosphonate    heavy metal    lead ion    stabilization mechanism    microstructure
发布日期:  2023-07-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金-山东联合基金(U2006223);深圳市科技计划(JCYJ20190808151011502); 广东省科技创新战略专项资金(“攀登计划”专项资金)(pdjh2022b0441)
通讯作者:  *方长乐,深圳大学土木与交通工程学院实验员。2015年嘉应学院土木工程专业本科毕业,2018年深圳大学土木工程专业硕士毕业。目前主要研究方向为纳米改性水泥基材料,发表高水平学术论文5篇,授权国家专利4项。fcl2020@szu.edu.cn   
作者简介:  龙武剑,深圳大学土木与交通工程学院教授、博士研究生导师。2000年法国国立图卢兹第三大学建筑工程专业本科毕业,2003年法国高等师范大学建筑材料与结构专业硕士毕业,2008年加拿大舍布鲁克大学土木工程专业博士毕业。目前主要从事高性能水泥基材料的研究,近五年以第一或通信作者身份在Cement and Concrete Composites、ACI Materials Journal、Composite Part B、Green Chemistry、Carbon等国际知名期刊发表学术论文80余篇,出版学术专著4部。
引用本文:    
龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
LONG Wujian, WU Zhuorui, WEI Jingjie, DONG Biqin, ZHANG Jinrui, FANG Changle. The Enhanced Lead(Ⅱ) Ions Stabilization of Alkali-activated Slag-based Materials with Appropriate Addition of Phosphonate. Materials Reports, 2023, 37(13): 21110095-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110095  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21110095
1 Wang D Q, He W, Wang Q, et al. Journal of the Chinese Ceramic Society, 2018, 46(5), 683 (in Chinese).
王登权, 何伟, 王强, 等. 硅酸盐学报, 2018, 46(5), 683.
2 Yang L Y, Wei T C, Li S W, et al. Journal of Hazardous Materials, 2021, 412, 125176.
3 Long W J, Gu Y C, Zheng D, et al. Journal of Cleaner Production, 2018, 192, 151.
4 Lee D J. Chemosphere, 2007, 66(9), 1727.
5 Mijno V, Catalan L J J, Martin F, et al. Journal of Colloid and Interface Science, 2004, 280(2), 465.
6 Wang X, Liu J, Wang L, et al. Bulletin of the Chinese Ceramic Society, 2012, 31(5), 1039 (in Chinese).
王昕, 刘晶, 汪澜, 等. 硅酸盐通报, 2012, 31(5), 1039.
7 Lee D J, Swarbrick G, Waite T D. Cement and Concrete Research, 2005, 35(6), 1027.
8 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295.
9 Long W J, Ye T H, Xing F, et al. Cement and Concrete Composites, 2020, 114, 11.
10 Ostovari H, Mueller L, Skocek J, et al. Environmental Science and Technology, 2021, 55(8), 5212.
11 Andrew R M. Earth System Science Data, 2018, 10(1), 195.
12 Lee J, Lee T, Jeong J, et al. Construction and Building Materials, 2021, 267, 15.
13 Amran M, Murali G, Khalid N H A, et al. Construction and Building Materials, 2021, 272, 121942.
14 Mohamed O A. Materials, 2019, 12(8), 1198.
15 Zheng W Z, Zhou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28 (in Chinese).
郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28.
16 Nikolic V, Komljenovic M, Dzunuzovic N, et al. Journal of Hazardous Materials, 2018, 350, 98.
17 Ye J Y, Zhang W S, Shi D. Journal of the Chinese Ceramic Society, 2017, 45(8), 1101 (in Chinese).
叶家元, 张文生, 史迪. 硅酸盐学报, 2017, 45(8), 1101.
18 Conte T, Plank J. Cement and Concrete Research, 2019, 116, 95.
19 Gu Y M, Fang Y H, Gong Y F, et al. Materials Research Innovations, 2014, 18, 829.
20 Wei X B, Li D Q, Ming F, et al. Construction and Building Materials, 2021, 269, 14.
21 Zahid M, Shafiq N, Isa M H, et al. Journal of Cleaner Production, 2018, 194, 483.
22 Li B X, Lyu X D, Zhang J F. Journal of Building Materials, 2016, 19(3), 417 (in Chinese).
李北星, 吕兴栋, 张剑峰. 建筑材料学报, 2016, 19(3), 417.
23 Ramachandran V S, Lowery M S, Wise T, et al. Materials and Structures, 1993, 26(161), 425.
24 Rickert J, Thielen G. Cement Concrete and Aggregates, 2004, 26(2), 92.
25 Kiiashko A, Chaouche M, Frouin L. Cement and Concrete Composites, 2021, 119, 13.
26 Liu M. Effects and related mechanisms of polycarboxylate superplasticizers on cement hydration. Master's Thesis, Wuhan University of Technology, China, 2015 (in Chinese).
刘明. 聚羧酸减水剂对水泥水化的影响及相关机理研究. 硕士学位论文, 武汉理工大学, 2015.
27 Li L H, Tian B, Han G S, et al. Journal of Building Materials, 2020, 23(2), 247 (in Chinese).
李立辉, 田波, 韩根生, 等. 建筑材料学报, 2020, 23(2), 247.
28 Lyu X D, Wang X B, Li B X. Materials Reports, 2020, 34(15), 15184 (in Chinese).
吕兴栋, 王学斌, 李北星. 材料导报, 2020, 34(15), 15184.
29 Barbieri L, Lancellotti I, Ponzoni C. Environmental Science and Pollution Research, 2014, 21(23), 13230.
30 Zhang H H, He P J, Zhang H, et al. Chinese Journal of Environmental Engineering, 2006, 7(11), 45 (in Chinese).
张后虎, 何品晶, 章骅, 等. 环境工程学报, 2006, 7(11), 45.
31 Huang S R, Cai H Y. Concrete, 1995(3), 31(in Chinese).
黄书荣, 蔡海瑜. 混凝土, 1995(3), 31.
32 Zhang J M. Structure and morphology of aluminum substituted calcium silicate hydrate. Master's Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
张建明. 铝掺杂的水化硅酸钙结构及微观形貌研究. 硕士学位论文, 武汉理工大学, 2011.
33 Song F Y, Gu L, Zhu N W, et al. Chemosphere, 2013, 92(4), 344.
34 Yin C Y, Shaaban M G, Mahmud H B. Building and Environment, 2007, 42(2), 794.
35 Hong S Y, Glasser F P. Cement and Concrete Research, 2002, 32(7), 1101.
36 Keller I R B. The immobilisation of heavy metals and metalloids in cement stabilised wastes. Ph. D. Thesis, Swiss Federal Institute of Technology, Swiss, 2002.
37 Koplik J, Kalina L, Masilko J, et al. Materials, 2016, 9(7), 533.
38 Wang Y G, Han F L, Mu J Q. Construction and Building Materials, 2018, 160, 818.
39 Browning F H, Fogler H S. Langmuir, 1996, 12(21), 5231.
40 Savija B, Lukovic M. Construction and Building Materials, 2016, 117, 285.
41 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(3), 417.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[5] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[6] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[7] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[8] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[9] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[10] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[11] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[12] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[13] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[14] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[15] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed