Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1659-1662    https://doi.org/10.11896/j.issn.1005-023X.2018.10.017
  材料研究 |
创新构型泡沫TiAl的制备及其力学响应特征
郝刚领,许巧平
延安大学材料物理研究所,延安 716000
Preparation and Mechanical Response Characteristics of TiAl Foam with Innovative Configuration
HAO Gangling, XU Qiaoping
Institute of Material Physics, Yan’an University, Yan’an 716000
下载:  全 文 ( PDF ) ( 3510KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 兼有金属和陶瓷特性的TiAl金属间化合物泡沫材料具有明确的性能优势和目标需求,在高温隔热材料、酸碱环境下的过滤材料、催化剂载体等领域有广阔的应用前景。本文首先采用Ti/Al元素粉末反应烧结制备了TiAl合金粉体,然后采用脱溶-烧结工艺制备了孔隙分布均匀、通孔型单孔结构的泡沫TiAl,该工艺可实现孔隙率、孔径、孔形等可控。准静态压缩测试表明,TiAl属于脆性泡沫材料,超过弹性区到达上屈服点时,材料瞬时坍塌失效。同时,随孔隙率的增大,TiAl的屈服强度、杨氏模量和弹性区域均减小,屈服强度与孔隙率的响应关系满足Gibson-Ashby模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝刚领
许巧平
关键词:  泡沫TiAl  粉末冶金  力学响应特征    
Abstract: There are incontrovertible performance advantage and objective demand for TiAl intermetallic compound foam materials with metal and ceramic properties, which has a wide application prospect in the fields of high temperature insulating material, filter material in acid-base environment, catalyst carrier etc. The TiAl alloy powder in the present study was firstly fabricated using the Ti/Al elemental power sintering. Then the open pore TiAl foam with single structure was prepared using the dissolution-sintering method. The TiAl foam has a well uniform pore distribution and the porosity, pore size and pore shape can be tailored according to the desirable demand. The quasi-static compression was carried out to characterize the mechanical properties of the TiAl foam. It was found that the TiAl foam belongs to typical brittle foam material. However, the TiAl will completely collapsed and become invalid once the compressive stress exceeds the upper yield strength after linear elastic region. Moreover, the yield strength, Young’s modular, elastic region of the TiAl foam decrease with increasing the porosity. The relationship between yield strength and porosity coincides well with the Gibson-Ashby model.
Key words:  TiAl foam    powder metallurgy    mechanical response characteristics
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51301150;51661032);新金属材料国家重点实验室开放基金(2012-Z01);陕西省青年科技新星人才专项(2013KJXX-11);陕西省教育厅自然科学专项(16JK1854);陕西省延安市工业攻关计划(2015KG-02;2016KG-02)
通讯作者:  郝刚领:男,1979年生,博士,教授,主要研究方向为新型超轻泡沫金属材料的制备/性能及其应用 Tel:0911-2332045 E-mail:glhao@issp.ac.cn   
引用本文:    
郝刚领,许巧平. 创新构型泡沫TiAl的制备及其力学响应特征[J]. 《材料导报》期刊社, 2018, 32(10): 1659-1662.
HAO Gangling, XU Qiaoping. Preparation and Mechanical Response Characteristics of TiAl Foam with Innovative Configuration. Materials Reports, 2018, 32(10): 1659-1662.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.017  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1659
1 何德坪.超轻多孔金属[M].北京:科学出版社,2008.
2 Li B Y, Rong L J, Li Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure [J]. Acta Materialia,2000,48(15):3895.
3 黄伯云.钛铝基金属间化合物 [M].长沙:中南工业大学出版社,1998.
4 Clemens H, Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys [J]. Advanced Engineering Materials,2000,2(9):551.
5 Jiang Y, He Y H, Huang B Y, et al. Progress in research on Ti-Al intermetallic compound porous material [J]. Materials China,2010,29(3):18(in Chinese).
江垚,何跃辉,黄伯云,等. Ti-Al金属间化合物多孔材料的研究进展 [J].中国材料进展,2010,29(3):18.
6 He Y H, Jiang Y, Xu N P, et al. Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect [J]. Advanced Materials,2007,19(16):2102.
7 Liang Y F, Yang F, Zhang L Q, et al. Reaction behavior and pore formation mechanism of TiAl-Nb porous alloys prepared by elemental powder metallurgy [J]. Intermetallics,2014,44:1.
8 Ide T, Tane M, Nakajima H. Compressive deformation behavior of porous γ-TiAl with directional pores [J]. Materials Science and Engineering A,2009,508(1-2):220.
9 Yang S H, Kim W Y, Kim M S. Fabrication of unidirectional porous TiAl-Mn intermetallic compounds by reactive sintering using extruded powder mixtures [J]. Intermetallics,2003,11(8):849.
10 Zhang W, Liu Y, Wang H, et al. Preparation and properties of porous Ti-Al alloys by reactive infiltration [J]. Powder Metallurgy,2011,54(3):253.
11 Mohammad A, Alahmari A, Moiduddin K, et al. Porous γ-TiAl structures fabricated by electron beam melting process [J]. Metals,2016,6(1):25.
12 Zhao X K, Sun H B, Lan L, et al. Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders [J]. Materials Letters,2009,63(28):2402.
13 Hao G L, Wang H, Li X Y. Novel double pore structures of TiAl produced by powder metallurgy processing [J]. Materials Letters,2015,142:11.
14 Wang F, Liang Y F, Shang S L, et al. Phase transformation in Ti-48Al-6Nb porous alloys and its influence on pore properties [J]. Materials & Design,2015,83:508.
15 Guyon J, Hazotte A, Monchoux J P, et al. Effect of powder state on spark plasma sintering of TiAl alloys [J]. Intermetallics,2013,34:94.
16 Gibson J, Ashby F. Cellular solids: Structure and properties. 2nd edition [M].Oxford:Cambridge University Press,1997.
[1] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[2] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[3] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[4] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[5] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[6] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[7] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[8] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[9] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[10] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[11] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[12] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[13] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[14] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[15] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed