Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22010067-8    https://doi.org/10.11896/cldb.22010067
  金属与金属基复合材料 |
高熵合金涂层对铝/钢液固复合双金属组织和性能的影响
马晶博1, 王涛1, 陈冲1,2,*, 熊美2, 肖利强2, 魏世忠2, 毛丰2, 张程2
1 河南科技大学材料科学与工程学院,河南 洛阳 471003
2 河南科技大学金属材料磨损控制与成型技术国家地方联合工程研究中心,河南 洛阳 471003
Effect of High Entropy Alloy Coating on Microstructure and Mechanical Properties of Al/Fe Liquid-Solid Bimetal Composite
MA Jingbo1, WANG Tao1, CHEN Chong1,2,*, XIONG Mei2, XIAO Liqiang2, WEI Shizhong2, MAO Feng2, ZHANG Cheng2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
2 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, Henan, China
下载:  全 文 ( PDF ) ( 25159KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用超音速火焰喷涂技术在45钢表面热喷涂FeCoCrNiAl高熵合金涂层,并采用液固复合的方法制备了铝/钢双金属复合试样,研究了高熵合金涂层对铝/钢双金属界面组织和性能的影响。利用相图计算软件Thermo-Calc计算了Al-Fe-Si体系在600 ℃和750 ℃下的等温截面,并采用SEM-EDS、EBSD、EPMA、纳米压痕仪和万能力学试验机对铝/钢双金属界面的微观组织和性能进行分析。结果表明:未喷涂高熵合金涂层和喷涂高熵合金涂层的铝/钢双金属之间均实现了冶金结合,在双金属界面处均未观察到裂纹等缺陷,过渡层平均厚度分别为24.5 μm和25.7 μm。界面过渡层均由Al5Fe2、τ1-(Al,Si)5Fe3、Al13Fe4、τ5-Al7Fe2Si和τ6-Al9Fe2Si2组成,笔者以此绘制了铝/钢之间的扩散路径。喷涂高熵合金涂层的铝/钢双金属经液固复合后界面处未发现高熵合金层;Co、Cr、Ni元素以固溶的形式存在于双金属基体和过渡层中,并未改变Al5Fe2相在[001]方向上的择优取向。铝/钢双金属界面过渡层的纳米硬度较两侧基体高,过渡层中Al5Fe2相的平均硬度最高;Co、Cr、Ni固溶到过渡层中,对过渡层硬度的影响不大。铝/钢双金属界面剪切强度为8.3 MPa,钢表面喷涂高熵合金后,铝/钢双金属界面剪切强度为12.2 MPa,剪切强度提高了47%。铝/钢双金属剪切断裂均为脆性断裂,断口组织主要为Al5Fe2;热喷涂高熵合金后,试样断口具有更多的撕裂棱,高熵合金涂层各元素在Al5Fe2中的固溶一定程度上提高了Al5Fe2的强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马晶博
王涛
陈冲
熊美
肖利强
魏世忠
毛丰
张程
关键词:  铝/钢双金属  高熵合金涂层  相图计算  界面  纳米硬度    
Abstract: FeCoCrNiAl high entropy alloy coating was thermal sprayed on the surface of 45 steel by high-velocity oxygen fuel spray process, and aluminum/steel bimetal composites were prepared by liquid-solid composite method in this work. The effect of high entropy alloy coating on the interfacial microstructure and properties of aluminum/steel bimetal was studied. Isothermal sections of Al-Fe-Si system at 600 ℃ and 750 ℃ were calculated using Thermo-Calc software. SEM-EDS, EBSD, EPMA, nano-indentation instrument and universal mechanical testing machine were utilized to analyze the interfacial microstructure and properties of the bimetals. The results show that good metallurgical bonding between Al alloy and steel without and with high entropy alloy coating was achieved, and no cracks and other defects were observed at the bimetal interface. The average thickness of transition layer was 24.5 μm and 25.7 μm, respectively. The interfacial transition layers both mainly consisted of Al5Fe2, τ1-(Al, Si)5Fe3, Al13Fe4, τ5-Al7Fe2Si and τ6-Al9Fe2Si2, and the diffusion path between Al alloy and steel was studied accordingly. No high entropy alloy layer was found at the interface of aluminum-steel bimetal after liquid-solid composite by spraying high entropy alloy coating. Co, Cr and Ni elements exist in the matrix and transition layer as solutes. The preferred orientation of Al5Fe2 phase in [001] direction was not changed. The nano-hardness of interfacial transition layer was higher than that of the matrix on both sides, and the average hardness of Al5Fe2 phase in the transition layer was the highest. The dissolution of Co, Cr and Ni into the transition layer have no effect on the hardness of the transition layer. The interfacial shear strength of the bimetal was 8.3 MPa, and raised to 12.2 MPa after spraying high entropy alloy on steel surface, which was increased by 47%. The shear fractures of the bimetals belong to brittle fracture, and the fracture structure is mainly composed of Al5Fe2. After thermal spraying high entropy alloy coating, the fracture of the sample has more tearing edges, and the solid solution of elements in the high entropy alloy coating improves the strength of Al5Fe2 to a certain extent.
Key words:  aluminum/steel bimetal    high entropy alloy coating    thermodynamic calculation    interface    nano-hardness
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TG14  
基金资助: 国家重点研发计划(2020YFB2008400);河南省中原学者工作站资助项目(214400510003)
通讯作者:  * 陈冲,河南科技大学副教授,2006年9月至2010年6月于中南大学攻读学士学位,2010年9月至2016年12月硕博连读毕业于中南大学粉末冶金国家重点实验室粉末粉体材料科学与工程专业。主要从事双金属复合材料以及相图热力学、扩散动力学研究。主持国家自然科学基金青年基金项目1项、河南省重点研发与推广专项(科技攻关)项目2项,在国内外学术期刊上发表论文20余篇,获得授权发明专利4项。chongchen@haust.edu.cn   
作者简介:  马晶博,2015年9月至2019年6月本科毕业于洛阳理工学院,于2019年9月至2022年6月在河南科技大学材料科学与工程学院攻读硕士学位,主要从事铝钢双金属复合材料的研究。
引用本文:    
马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
MA Jingbo, WANG Tao, CHEN Chong, XIONG Mei, XIAO Liqiang, WEI Shizhong, MAO Feng, ZHANG Cheng. Effect of High Entropy Alloy Coating on Microstructure and Mechanical Properties of Al/Fe Liquid-Solid Bimetal Composite. Materials Reports, 2023, 37(15): 22010067-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010067  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22010067
1 Jia W X, Hao Z Y, Xu H M. Journal of Zhejiang University Engineering Edition, 2008, 42(2), 5 (in Chinese).
贾维新, 郝志勇, 徐红梅. 浙江大学学报工学版, 2008, 42(2), 5.
2 Jung J G, Ahn T Y, Cho Y H, et al. Acta Materialia, 2017, 144, 31.
3 Jeon J H, Shin J H, Bae D H. Materials Science and Engineering A, 2019, 748(4), 367.
4 Zhang X M, Chen Z Y, Luo H F. Materials Reports, 2021, 35(7), 7145 (in Chinese).
张先满, 陈再雨, 罗洪峰. 材料导报, 2021, 35(7), 7145.
5 Cheng W J, Wang C J. Surface and Coatings Technology, 2009, 204(6-7), 824.
6 Chen S H, Yang D D, Zhang M X, et al. Metallurgical and Materials Transactions A, 2016, 47(10), 5088.
7 Springer H, Kostka A, Santos J, et al. Materials Science and Engineering A, 2011, 528(13-14), 4630.
8 Jiang W M, Li G Y, Jiang Z L, et al. Materials Science and Technology, 2018, 34(11), 1519.
9 Yin F C, Zhao M X, Liu Y X, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(2), 556.
10 Liu Y, Bian X, Yang J, et al. Journal of Materials Research, 2013, 28(22), 3190.
11 Bhupinder D, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769, 777.
12 Azimaee H, Sarfaraz M, Mirjalili M, et al. Surface and Coatings Technology, 2019, 357, 483.
13 Cheng W J, Wang C J. Intermetallics, 2011, 19(10), 1455.
14 Jiang W M, Fan Z T, Li G Y, et al. Journal of Alloys and Compounds, 2016, 688, 742.
15 Jiang W M, Fan Z T, Li G Y, et al. Journal of Alloys and Compounds, 2016, 678, 249.
16 Wang Q. Study on aluminum/steel bimetal casting process and interface microstructure. Master's Thesis, Harbin Engineering University, China, 2019 (in Chinese).
王强. 铝/钢双金属铸造工艺及其界面微观结构研究. 硕士学位论文, 哈尔滨工程大学, 2019.
17 Tavakoli A M, Nami B, Malekan M, et al. International Journal of Metalcasting, DOI:10. 1007/s40962-021-00630-7.
18 Cai Y, Ao S, Manladan S M, et al. Materials Research Express, 2019, 6(10), 1065.
19 Zhao M, Wu T, Liu D, et al. Materials and Corrosion, 2020, 71(3), 430.
20 Zhang G J, Tian Q W, Yin K X, et al. Intermetallics, 2020, 119, DOI:10. 1016/j. intermet. 2020. 106722.
21 Xiao J K, Tan H, Wu Y Q, et al. Surface and Coatings Technology, DOI:10. 1016/j. surfcoat. 2020. 125430.
22 Shi Q, Zhang X C, Zhou J, et al. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2020. 156321.
23 Cui Y, Shen J Q, Manladan S M, et al. Applied Surface Science, DOI:10. 1016/j. apsusc. 2020. 147205.
24 Khorrami M S, Azhari H, Nademi A, et al. Intermetallics, DOI:10. 1016/j. intermet. 2020. 106876 .
25 Fan D, Kang Y T, Huang J K, et al. Journal of Lanzhou University of Technology, 2019, 45(6), 1(in Chinese).
樊丁, 康玉桃, 黄健康, 等. 兰州理工大学学报, 2019, 45(6), 1.
26 Du Y, Julius C S, Liu Z K, et al. Intermetallics, 2008, 16, 554.
27 Yang H H, Tsai W T, Kuo J C, et al. Journal of Alloys and Compounds, 2011, 509(32), 8176.
28 Naoki T, Manamu N, Satoru K, et al. Intermetallics, 2015, 67, 1.
29 Zhang N, Hu Q, Yang F, et al. Metallurgical and Materials Transactions A, 2020, 51(6), 2711.
30 Zhang L, Du Y, Steinbach I, et al. Acta Materialia, 2010, 58(10), 3664.
31 Zheng W, Wang J, He Y, et al. Calphad, 2018, 61, 189.
32 Wang S, Peng Z, Zhang W, et al. Calphad Pergamon Press, 2012, 36(9), 127.
33 Björn, Jönsson. Isij International, 1995, 35(11), 1415.
34 Naoi D, Kajihara M. Materials Science and Engineering:A, 2007, 459(1-2), 375.
[1] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[2] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[3] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[4] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[5] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[6] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[7] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[8] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[9] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[10] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[11] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[12] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[13] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[14] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[15] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed