Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23050153-9    https://doi.org/10.11896/cldb.23050153
  无机非金属及其复合材料 |
硫铝酸盐水泥水化产物-铝凝胶的研究进展
张洋洋1,2, 张群力1,2, 赵庆新1,2, 吴凯3, 常钧4,*
1 燕山大学亚稳材料制备技术与科学国家重点实验室,河北 秦皇岛 066004
2 燕山大学城市固废无害化协同处置及利用河北省工程研究中心,河北 秦皇岛 066004
3 同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
4 大连理工大学建设工程学院,辽宁 大连116024
Research Progress on Aluminum Hydroxide Gel in Calcium Sulfoaluminate Cement
ZHANG Yangyang1,2, ZHANG Qunli1,2, ZHAO Qingxin1,2, WU Kai3, CHANG Jun4,*
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
2 Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066004, Hebei, China
3 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
4 School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 7066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫铝酸盐水泥作为我国第三系列水泥,既是一种低碳绿色水泥,又是一种海工修补加固水泥。铝凝胶(AH3)是其最重要的水化产物之一,可有效提升该系列水泥石的宏观力学性能。本文结合化工中AH3的基础研究,阐述了硫铝酸盐水泥石中AH3的形成过程,归纳了AH3的一般性特征,对比了化工中AH3与硫铝酸盐水泥石中AH3的异同点,具体分析了各类因素对AH3微纳结构及含量的影响,总结了目前AH3研究的不足之处,提出了未来研究的方向和思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洋洋
张群力
赵庆新
吴凯
常钧
关键词:  硫铝酸盐水泥  铝凝胶  形成过程  微纳结构  影响因素    
Abstract: Calcium sulfoaluminate (CSA) cement, as the third cement series in China, is not only a kind of low-CO2 cement, but also a kind of repairing cement in offshore and coastal structure engineering. Aluminum hydroxide gel (AH3) is one of the most important hydration products in CSA cement, which significantly contributes to the macro-properties. Based on the theoretical research of AH3 in chemical engineering, a review on AH3 in CSA cement is comprehensively represented, including the formation process of AH3, the general characteristics of AH3, the similarities and differences between AH3 in chemical engineering and that in CSA cement, and the influence of various factors on the microstructure and content of AH3. Furthermore, the current shortcomings and the future opportunities regarding AH3 in CSA cement are discussed.
Key words:  calcium sulfoaluminate cement    aluminum hydroxide gel    formation process    micro/nano structure    influence factors
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TQ172  
基金资助: 国家自然科学基金 (52108252);河北省自然科学基金 (E2021203147;E2024203068);河北省教育厅科学研究项目(BJK2023023);河北省引进留学人员资助项目(C20230330);先进土木工程材料教育部重点实验室(同济大学)开放基金 (202305)
通讯作者:  * 常钧,大连理工大学教授、博士研究生导师。主要从事特种水泥与混凝土、废渣综合利用及水泥基功能材料等方面的研究。参加和主持完成国家863、国家973、国家科技支撑计划、国家自然科学基金和省部级的科研项目10余项;获得包括国家技术发明二等奖、国家建材行业科技进步二等奖、山东省科技进步一等奖、山东省技术发明一等奖等在内的国家级和省部级科技奖励7项。mlchang@dlut.edu.cn   
作者简介:  张洋洋,博士,燕山大学建筑工程与力学学院副教授。2019年博士毕业于大连理工大学。主要从事特种水泥及海水海砂混凝土等方面的研究。先后主持国家自然科学基金青年科学基金项目、河北省自然科学基金优秀青年科学基金项目、河北省自然科学基金青年科学基金项目、河北高校青年拔尖人才项目、河北省引进留学人员资助项目和先进土木工程材料教育部重点实验室(同济大学)开放基金,发表SCI/EI论文40余篇。
引用本文:    
张洋洋, 张群力, 赵庆新, 吴凯, 常钧. 硫铝酸盐水泥水化产物-铝凝胶的研究进展[J]. 材料导报, 2024, 38(14): 23050153-9.
ZHANG Yangyang, ZHANG Qunli, ZHAO Qingxin, WU Kai, CHANG Jun. Research Progress on Aluminum Hydroxide Gel in Calcium Sulfoaluminate Cement. Materials Reports, 2024, 38(14): 23050153-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050153  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23050153
1 Shen W, Cao L, Li Q, et al. Renewable and Sustainable Energy Reviews, 2015, 50, 1004.
2 Scrivener K L, John V M, Gartner E M. Cement and Concrete Research, 2018, 114, 2.
3 Chen I A, Juenger M C G. Cement and Concrete Composites, 2012, 34(8), 893.
4 Hu C, Hou D, Li Z. Cement and Concrete Composites, 2017, 80, 10.
5 Juenger M C G, Winnefeld F, Provis J L, et al. Cement and Concrete Research, 2011, 41(12), 1232.
6 Wang X, Shui Z, Yu R, et al. Construction and Building Materials, 2017, 150, 459.
7 Burris L E, Kurtis K E. Cement and Concrete Research, 2018, 104, 105.
8 Quillin K. Cement and Concrete Research, 2001, 31(9), 1341.
9 Wang Q, Li S, Pan S, et al. Journal of Building Materials, 2020, 23(2), 239(in Chinese).
王琴, 李时雨, 潘硕, 等. 建筑材料学报, 2020, 23(2), 239.
10 Du Y, Wang Z, Quan X, et al. Journal of Building Materials, 2023(4), 361(in Chinese).
杜银飞, 王志杰, 全先凯, 等. 建筑材料学报, 2023(4), 361.
11 Song J, Young J. Journal of the American Ceramic Society, 2004, 85, 535.
12 Cuesta A, álvarez-Pinazo G, Sanfélix S G, et al. Cement and Concrete Research, 2014, 63, 127.
13 Wang Y, Su M, Zhang L. Sulphoalumninatecement, Beijing University of Technology Press, 1999, pp. 33(in Chinese).
王燕谋, 苏慕珍, 张量. 硫铝酸盐水泥(第一版), 北京工业大学出版社,1999, pp. 33.
14 Kasselouri V, Tsakiridis P, Malami C, et al. Cement and Concrete Research. 1995, 25(8), 1726.
15 Chang J, Cui K. Journal of Building Materials, 2020, 23(2), 438(in Chinese)
常钧, 崔凯. 建筑材料学报, 2020, 23(2), 438.
16 Winnefeld F, Barlag S. Journal of Thermal Analysis and Calorimetry, 2010, 101(3), 949.
17 Wang R, Liu K, Wan Q, et al. Journal of Building Materials, 2022, 25(8), 836(in Chinese).
王茹, 刘科, 万芹, 等. 建筑材料学报, 2022, 25(8), 836.
18 Coster D, Fripiat J J. Chemistry of Materials, 1993, 5(9), 1204.
19 Sato T, Sato K. Journal of the Ceramic Society of Japan, 1996, 104, 377.
20 Mackenzie K J D, Temuujin J, Okada K. Thermochimica Acta, 1999, 327(1), 103.
21 Hsu P H. Minerals in Soil Environments, Madison, Wisconsin, USA, 1989, pp. 331.
22 Sonthalia R, Behara P, Kumaresan T, et al. International Journal of Mineral Processing, 2013, 125, 137.
23 Watson J H L, Parsons J, Vallejo-Freire A, et al. Kolloid-Zeitschrift, 1955, 140(2), 102.
24 Schoen R, Roberson C E. American Mineralogist. 1970, 55(1-2), 43.
25 Mortland M M. Clays and Clay Minerals, 1972, 20(2), 107.
26 Demichelis R, Civalleri B, Noel Y, et al. Chemical Physics Letters, 2008, 465(4), 220.
27 Winnefeld F, Lothenbach B. RILEM Technical Letters, 2016, 1, 10.
28 Jansen D, Spies A, Neubauer J, et al. Cement and Concrete Research, 2017, 91, 106.
29 Gastaldi D, Paul G, Marchese L, et al. Cement and Concrete Research, 2016, 90, 162.
30 Song F, Lü Y, Qin H, et al. Chemical Papers, 2021, 75(3), 909.
31 Bahn C B, Kasza K E, Shack W J, et al. Nuclear Engineering and Design, 2011, 241(5), 1914.
32 Pöllmann H, Wenda R, Fylak M, et al. In: Calcium Aluminate Cements: Proceedings of the Centenary Conference. Avignon, France, 2008, pp. 123.
33 Cuesta A, Ichikawa R U, Londono-Zuluaga D, et al. Cement and Concrete Research. 2017, 96, 1.
34 Lothenbach B, Pelletier-Chaignat L, Winnefeld F. Cement and Concrete Research, 2012, 42(12), 1621.
35 Zhang Y, Chang J, Zhao J, et al. Journal of the American Ceramic Society, 2018, 101(9), 4262.
36 Hargis C W, Telesca A, Monteiro P J M. Cement and Concrete Research, 2014, 65, 15.
37 Zhang Y, Zhao Q, Gao Z, et al. Cement and Concrete Research, 2021, 150, 106607.
38 Torréns-Martín D, Fernández-Carrasco L, Martínez-Ramírez S. Cement and Concrete Research, 2013, 47, 43.
39 Kumara C K, Ng W J, Bandara A, et al. Journal of Colloid and Interface Science, 2010, 352(2), 252.
40 Cuesta A, De la Torre A G, Santacruz I, et al. The Journal of Physical Chemistry C, 2017, 121(5), 3044.
41 Jeong U, Shin H H, Kim Y. Chemical Engineering Journal, 2015, 281, 428.
42 Souza E C C, Rey J F Q, Muccillo E N S. Applied Surface Science, 2009, 255(6), 3779.
43 Zajac M, Skocek J, Bullerjahn F, et al. Cement and Concrete Research, 2016, 84, 62.
44 Berger S, Aouad G, Cau Dit Coumes C, et al. Cement and Concrete Research, 2013, 53, 211.
45 Hargis C, Lothenbach B, Müller C, et al. Advances in Cement Research, 2018, 31, 160.
46 Sánchez-Herrero M J, Fernández-Jiménez A, Palomo A. Cement and Concrete Research, 2013, 46, 41.
47 Padilla-Encinas P, Palomo A, Blanco-Varela M T, et al. Cement and Concrete Research, 2020, 138, 106251.
48 Tambara L U D, Cheriaf M, Rocha J C, et al. Cement and Concrete Research, 2020, 128, 105953.
49 Zhang Y, Chang J. Construction and Building Materials, 2018, 180, 655.
50 Zhang Y, Zhao Q, Gao Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2021, 9(34), 11534.
51 Isobe T, Watanabe T, D'Espinose De La Caillerie J B, et al. Journal of Colloid and Interface Science, 2003, 261(2), 320.
52 Du X, Wang Y, Su X, et al. Powder Technology, 2009, 192(1), 40.
53 Andersen M D, Jakobsen H J, Skibsted J. Cement and Concrete Research, 2006, 36(1), 3.
54 Hargis C W, Lothenbach B, Müller C J, et al. Cement and Concrete Composites, 2017, 80, 123.
55 Gastaldi D, Bertola F, Canonico F, et al. Cement and Concrete Research, 2018, 109, 30.
56 Ansari W S, Chang J, Rehman Z U, et al. Construction and Building Materials, 2022, 317, 125.
57 Kodama H, Schnitzer M. Geoderma, 1980, 24(3), 195.
58 Wang P, Li N, Xu L. Cement and Concrete Research, 2017, 100, 203.
59 Xu L, Wu K, Rößler C, et al. Cement and Concrete Composites, 2017, 80, 298.
60 Xu L, Yang X, Wang P, et al. Journal of Building Materials, 2016, 19(6), 983. (in Chinese).
徐玲琳, 杨晓杰, 王培铭, 等. 建筑材料学报, 2016, 19(6), 983.
61 Shayanfar S, Aghazadeh V, Saravari A, et al. Journal of Crystal Growth, 2018, 496-497, 1.
62 Zhang X, Zhang X, Graham T, et al. Crystal Growth & Design, 2017, 17(12), 6801.
63 Zhang Y. Characterization, control and cementitious mechanism of AH3 phase in calcium sulfoaluminate cements. Ph.D. Thesis, Dalian University of Technology, China, 2019(in Chinese).
张洋洋. 硫铝酸盐水泥中AH3相表征、调控及胶凝机理. 博士学位论文, 大连理工大学, 2019.
64 Chen X. Barium(Strontium) calcium sulphoaluminate cement, Science Press, 2013(in Chinese).
程新. 硫铝酸钡(锶)钙水泥, 科学出版社, 2013.
65 Zhao J. Research on strontium calcium sulfoaluminate and its hydration and cementitious mechanism. Ph.D. Thesis, Dalian University of Techno-logy, China, 2018(in Chinese).
赵九野. 硫铝酸锶钙及其水化胶凝机理研究. 博士学位论文, 大连理工大学, 2018.
66 Shang X. Optimization of preparation and hydration of barium calcium sulphoaluminate minerals based on Rietveld method. Ph.D. Thesis, Dalian University of Technology, China, 2017(in Chinese).
尚小朋. 基于Rietveld方法优化硫铝酸钡钙矿物的合成及水化. 博士学位论文, 大连理工大学, 2017.
67 Zhang Y, Chang J, Zhao J. Journal of the American Ceramic Society, 2018, 4, 2165.
68 Morin V, Termkhajornkit P, Huet B, et al. Cement and Concrete Research, 2017, 99, 8.
69 Barcelo L, Kline J, Walenta G, et al. Materials and Structures, 2014, 47(6), 1055.
70 Hanein T, Gálvez Martos J L, Bannerman M N. Journal of Cleaner Production, 2018, 172, 2278.
71 Song F, Yu Z, Yang F, et al. Cement and Concrete Research, 2015, 71, 1.
72 Li J, Chang J. Construction and Building Materials, 2019, 208, 36.
73 Bullerjahn F, Boehm-Courjault E, Zajac M, et al. Cement and Concrete Research, 2019, 116, 120.
74 Bullerjahn F, Skocek J, Ben Haha M, et al. Construction and Building Materials, 2019, 200, 770.
75 Zhang Y, Chang J, Ji J. Construction and Building Materials, 2018, 167, 587.
76 Prodromou K P. Clays and Clay Minerals, 1995, 43(1), 111.
77 Cau Dit Coumes C, Dhoury M, Champenois J, et al. Cement and Concrete Research, 2017, 97, 50.
78 Cau Dit Coumes C, Dhoury M, Champenois J, et al. Cement and Concrete Research, 2017, 96, 42.
79 Violante A, Huang P M. Clays and Clay Minerals, 1993, 41(5), 590.
80 Carrier X, Marceau E, Lambert J, et al. Journal of Colloid and Interface Science, 2007, 308(2), 429.
81 Lefèvre G, Pichot V, Fédoroff M. Chemistry of Materials, 2003, 15(13), 2584.
82 Norhasri M S M, Hamidah M S, Fadzil A M. Construction and Building Materials, 2017, 133, 91.
83 Sanchez F, Sobolev K. Construction and Building Materials, 2010, 24(11), 2060.
84 Kaiser K, Guggenberger G. European Journal of Soil Science, 2003, 54(2), 219.
85 Chang J, Fang Y, Li Y. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2014, 42, 1377(in Chinese).
常钧, 房延凤,李勇. 硅酸盐学报, 2014, 42(11), 1377.
86 Chang J, Zhang Y, Shang X, et al. Construction and Building Materials, 2017, 133, 314.
87 Chang J, Zhang Y, Shang X, et al. Journal of Building Materials, 2016, 19(6), 1028(in Chinese).
常钧, 张洋洋, 尚小朋, 等. 建筑材料学报, 2016, 19(6), 1028.
[1] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[2] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[3] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[4] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[5] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[8] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[9] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[10] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[11] 汪晖, 王轲炜, 梁昭. NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响[J]. 材料导报, 2023, 37(23): 22070005-5.
[12] 王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
[13] 陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
[14] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[15] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed