Experimental Study on Bond Strength of Foundation Slabs and Anti-floating Anchors with Different Materials
WANG Fengjiao1, BAI Xiaoyu1,*, ZHANG Yunguang2, JING Desheng1, ZHANG Mingyi1, WANG Haigang3, HOU Dongshuai1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China 2 Qingdao Urban Construction Investment (Group) Co., Ltd., Qingdao 266101, Shandong, China 3 Shandong Expressway Engineering Construction Group Co., Ltd., Jinan 250014, China
Abstract: Glass fiber reinforced polymer (GFRP) anchor has many advantages such as strong corrosion resistance, high tensile strength, poor conductivity and relatively low cost, so it has become a potential substitute for steel anchor in anti-floating engineering of underground structures. The ultimate pullout tests of GFRP and steel anti-floating anchors were carried out on the inverted foundation slab to clarify the bonding and anchoring characteristics between GFRP anti-floating anchor and foundation slab. The influence mechanism of anchor bar material, vertical ancho-rage length, bending radius, bending anchorage length and bond length on the bond strength between anti-floating anchor and foundation slab is revealed. The results show that: (1) GFRP anti-floating anchors and straight-anchored steel anti-floating anchors are prone to shear slip failure, and curved-anchored steel anchors are prone to anchor bar fracture failure. (2) Under the experimental conditions, the bond strength between the anti-floating anchor with a diameter of 28 mm and the base plate is between 1.23—7.79 MPa. (3) Bending anchorage length is the main factor affecting the bond strength between anti-floating anchor and foundation slab, and the effect on GFRP anti-floating anchor is the most significant. (4) Comparing the bond-slip curves of the two kinds of anti-floating anchors, there is an obvious inflection point in the bond-slip curve of the straight-anchored steel anchor, while the straight-anchored GFRP anchor is almost linearly rising.
王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
WANG Fengjiao, BAI Xiaoyu, ZHANG Yunguang, JING Desheng, ZHANG Mingyi, WANG Haigang, HOU Dongshuai. Experimental Study on Bond Strength of Foundation Slabs and Anti-floating Anchors with Different Materials. Materials Reports, 2023, 37(22): 22050046-8.
1 Jia J Q, Song E X. Chinese Journal of Geotechnical Engineering, 2002, 24(6), 769(in Chinese). 贾金青, 宋二祥. 岩土工程学报, 2002, 24(6), 769. 2 Kuang Z, Zhang M Y, Bai X Y, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(10), 1882 (in Chinese). 匡政, 张明义, 白晓宇, 等. 岩土工程学报, 2019, 41(10), 1882. 3 Bai X Y, Zhang M Y, Kuang Z, et al. Journal of Central South University(Science and Technology), 2020, 51(7), 1977 (in Chinese). 白晓宇, 张明义, 匡政, 等. 中南大学学报(自然科学版), 2020, 51(7), 1977. 4 Cao H, Pan H, Luo G Y. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12), 2542 (in Chinese). 曹洪, 潘泓, 骆冠勇. 岩石力学与工程学报, 2016, 35(12), 2542. 5 Zheng C, Bai X Y, Zhang M Y, et al. Materials Reports, 2020, 34(13), 13194 (in Chinese). 郑晨, 白晓宇, 张明义, 等. 材料导报, 2020, 34(13), 13194. 6 Kuang Z, Zhang M Y, Bai X Y. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(1), 49. 7 Bai X Y, Liu X Y, Zhang M Y, et al. Acta Materiae Compositae Sinica, 2021, 38(12), 4139 (in Chinese). 白晓宇, 刘雪颖, 张明义, 等. 复合材料学报, 2021, 38(12), 4139. 8 Xue W C, Liu H J, Wang X H. Journal of Building Structures, 2004, 25(2), 104 (in Chinese). 薛伟辰, 刘华杰, 王小辉. 建筑结构学报, 2004, 25(2), 104. 9 Okelo R. Journal of Aerospace Engineering, 2007, 20(3), 133. 10 Lee J Y, Kim T Y, Kim T J, et al. Composites Part B, Engineering, 2008, 39(2), 258. 11 Liu Y H, Yuan Y. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2), 394 (in Chinese). 刘颖浩, 袁勇. 岩石力学与工程学报, 2010, 29(2), 394. 12 Hu J X. Research and analysis of anchorage performance of GFRP bolt. Master's Thesis, Central South University, China, 2012 (in Chinese). 胡金星. GFRP锚杆锚固性能研究与分析. 硕士学位论文, 中南大学, 2012. 13 Arias J P M, Vazquez A, Escobar M M. Journal of Composite Materials, 2012, 46(18), 2271. 14 Li G W, Yu L, Wu Y C, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8), 1711 (in Chinese). 李国维, 余亮, 吴玉财, 等. 岩石力学与工程学报, 2014, 33(8), 1711. 15 Zeng X M, Lei Z L, Zhang W J, et al. Chinese Journal of Rock Mecha-nics and Engineering, 2002, 21(1), 143 (in Chinese). 曾宪明, 雷志梁, 张文巾, 等. 岩石力学与工程学报, 2002, 21(1), 143. 16 Zhang M Y, Kou H L, Bai X Y, et al. Geotechnical Mechanics, 2014, 35(4), 1069 (in Chinese). 张明义, 寇海磊, 白晓宇, 等. 岩土力学, 2014, 35(4), 1069. 17 Maranan G B, Manalo A C, Karunasena W, et al. Composite Structures, 2015, 11(132), 1113. 18 Bai X Y, Zhang M Y, Li W W, et al. Journal of Central South University (Natural Science Edition), 2015, 46(10), 3841 (in Chinese). 白晓宇, 张明义, 李伟伟, 等. 中南大学学报(自然科学版), 2015, 46(10), 3841. 19 Gooranorimi O, Suaris W, Nanni A. Engineering Structures, 2017, 146, 34. 20 Bai X Y, Zhang M Y, Wang Y H, et al. Civil Engineering and Environmental Engineering, 2018, 40(5), 78 (in Chinese). 白晓宇, 张明义, 王永洪, 等. 土木建筑与环境工程, 2018, 40(5), 78. 21 JGJ 476—2019, Anti-floating technical standard for construction enginee-ring, China Construction Industry Press, China, 2019 (in Chinese). JGJ 476—2019, 建筑工程抗浮技术标准. 中国建筑工业出版社, 2019. 22 JGJ 120—2012, Technical specification for building foundation pit support, China Construction Industry Press, China, 2012 (in Chinese). JGJ 120—2012, 建筑基坑支护技术规程. 中国建筑工业出版社, 2012. 23 Huang Z H, Li G W, Wang S J, et al. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5), 1008. 黄志怀, 李国维, 王思敬, 等. 岩石力学与工程学报, 2008, 27(5), 1008. 24 Wang H G. Experimental study on bonding performance of GFRP anti-floating anchor. Master's Thesis, Qingdao University of Technology, China, 2021 (in Chinese). 王海刚. GFRP抗浮锚杆黏结性能试验研究. 硕士学位论文, 青岛理工大学, 2021.