Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050046-8    https://doi.org/10.11896/cldb.22050046
  高分子与聚合物基复合材料 |
不同材质抗浮锚杆与基础底板的黏结强度试验研究
王凤姣1, 白晓宇1,*, 张云光2, 井德胜1, 张明义1, 王海刚3, 侯东帅1
1 青岛理工大学土木工程学院,山东 青岛 266520
2 青岛城市建设投资(集团)有限责任公司,山东 青岛 266101
3 山东高速工程建设集团有限公司,济南 250014
Experimental Study on Bond Strength of Foundation Slabs and Anti-floating Anchors with Different Materials
WANG Fengjiao1, BAI Xiaoyu1,*, ZHANG Yunguang2, JING Desheng1, ZHANG Mingyi1, WANG Haigang3, HOU Dongshuai1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
2 Qingdao Urban Construction Investment (Group) Co., Ltd., Qingdao 266101, Shandong, China
3 Shandong Expressway Engineering Construction Group Co., Ltd., Jinan 250014, China
下载:  全 文 ( PDF ) ( 8048KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 玻璃纤维增强聚合物(Glass fiber reinforced polymer,GFRP)锚杆因具有耐腐蚀性能强、抗拉强度高、导电性差、造价相对低等诸多优势成为钢筋锚杆的潜在替代品应用于地下结构抗浮工程中。采用倒置基础底板对GFRP筋和钢筋两种材质的抗浮锚杆开展现场极限抗拔试验,明确GFRP抗浮锚杆与地基底板之间的黏结锚固特性,揭示锚筋材质、竖向锚固长度、弯曲半径、弯折锚固长度及黏结长度等因素对抗浮锚杆与基础底板黏结强度的影响机制。结果表明:(1)GFRP抗浮锚杆及直锚的钢筋抗浮锚杆易发生剪切滑移破坏,弯锚的钢筋锚杆发生锚筋断裂破坏;(2)本试验条件下,直径28 mm的抗浮锚杆与基础底板的黏结强度介于1.23~7.79 MPa;(3)弯折锚固长度是影响抗浮锚杆与基础底板黏结强度的主要因素,且对GFRP抗浮锚杆的影响最显著,GFRP锚筋不宜在基础底板内进行弯折;(4)对这两种材质抗浮锚杆的黏结-滑移曲线进行对比,直锚钢筋锚杆的黏结-滑移曲线存在明显拐点,而直锚GFRP锚杆则几乎为线性上升状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凤姣
白晓宇
张云光
井德胜
张明义
王海刚
侯东帅
关键词:  GFRP抗浮锚杆  基础底板  现场试验  黏结强度  影响因素    
Abstract: Glass fiber reinforced polymer (GFRP) anchor has many advantages such as strong corrosion resistance, high tensile strength, poor conductivity and relatively low cost, so it has become a potential substitute for steel anchor in anti-floating engineering of underground structures. The ultimate pullout tests of GFRP and steel anti-floating anchors were carried out on the inverted foundation slab to clarify the bonding and anchoring characteristics between GFRP anti-floating anchor and foundation slab. The influence mechanism of anchor bar material, vertical ancho-rage length, bending radius, bending anchorage length and bond length on the bond strength between anti-floating anchor and foundation slab is revealed. The results show that: (1) GFRP anti-floating anchors and straight-anchored steel anti-floating anchors are prone to shear slip failure, and curved-anchored steel anchors are prone to anchor bar fracture failure. (2) Under the experimental conditions, the bond strength between the anti-floating anchor with a diameter of 28 mm and the base plate is between 1.23—7.79 MPa. (3) Bending anchorage length is the main factor affecting the bond strength between anti-floating anchor and foundation slab, and the effect on GFRP anti-floating anchor is the most significant. (4) Comparing the bond-slip curves of the two kinds of anti-floating anchors, there is an obvious inflection point in the bond-slip curve of the straight-anchored steel anchor, while the straight-anchored GFRP anchor is almost linearly rising.
Key words:  GFRP anti-floating anchor    foundation floor    field test    bond strength    influencing factors
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TU473  
基金资助: 国家自然科学基金项目(51708316);山东省自然科学基金重点项目(ZR2020KE009)
通讯作者:  * 白晓宇,青岛理工大学土木工程学院教授、博士研究生导师、第十三届青岛市青年科技奖获得者。2007年内蒙古工业大学土木工程专业本科毕业,2010年青岛理工大学土木工程专业硕士毕业,2015年青岛理工大学土木工程专业博士毕业后到青岛理工大学工作至今。目前主要从事岩土与基础工程、FRP材料在岩土工程中的应用研究。以第一作者出版学术著作3部,以第一作者和通信作者在国内外主流期刊发表发表SCI/EI论文45篇,授权国内外发明专利51项。baixiaoyu538@163.com   
作者简介:  王凤姣,2020年9月于鲁东大学获管理学学士学位。现为青岛理工大学土木工程学院硕士研究生,在白晓宇教授的指导下进行研究。目前主要研究领域为FRP材料在岩土工程中的应用。
引用本文:    
王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
WANG Fengjiao, BAI Xiaoyu, ZHANG Yunguang, JING Desheng, ZHANG Mingyi, WANG Haigang, HOU Dongshuai. Experimental Study on Bond Strength of Foundation Slabs and Anti-floating Anchors with Different Materials. Materials Reports, 2023, 37(22): 22050046-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050046  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050046
1 Jia J Q, Song E X. Chinese Journal of Geotechnical Engineering, 2002, 24(6), 769(in Chinese).
贾金青, 宋二祥. 岩土工程学报, 2002, 24(6), 769.
2 Kuang Z, Zhang M Y, Bai X Y, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(10), 1882 (in Chinese).
匡政, 张明义, 白晓宇, 等. 岩土工程学报, 2019, 41(10), 1882.
3 Bai X Y, Zhang M Y, Kuang Z, et al. Journal of Central South University(Science and Technology), 2020, 51(7), 1977 (in Chinese).
白晓宇, 张明义, 匡政, 等. 中南大学学报(自然科学版), 2020, 51(7), 1977.
4 Cao H, Pan H, Luo G Y. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12), 2542 (in Chinese).
曹洪, 潘泓, 骆冠勇. 岩石力学与工程学报, 2016, 35(12), 2542.
5 Zheng C, Bai X Y, Zhang M Y, et al. Materials Reports, 2020, 34(13), 13194 (in Chinese).
郑晨, 白晓宇, 张明义, 等. 材料导报, 2020, 34(13), 13194.
6 Kuang Z, Zhang M Y, Bai X Y. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(1), 49.
7 Bai X Y, Liu X Y, Zhang M Y, et al. Acta Materiae Compositae Sinica, 2021, 38(12), 4139 (in Chinese).
白晓宇, 刘雪颖, 张明义, 等. 复合材料学报, 2021, 38(12), 4139.
8 Xue W C, Liu H J, Wang X H. Journal of Building Structures, 2004, 25(2), 104 (in Chinese).
薛伟辰, 刘华杰, 王小辉. 建筑结构学报, 2004, 25(2), 104.
9 Okelo R. Journal of Aerospace Engineering, 2007, 20(3), 133.
10 Lee J Y, Kim T Y, Kim T J, et al. Composites Part B, Engineering, 2008, 39(2), 258.
11 Liu Y H, Yuan Y. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2), 394 (in Chinese).
刘颖浩, 袁勇. 岩石力学与工程学报, 2010, 29(2), 394.
12 Hu J X. Research and analysis of anchorage performance of GFRP bolt. Master's Thesis, Central South University, China, 2012 (in Chinese).
胡金星. GFRP锚杆锚固性能研究与分析. 硕士学位论文, 中南大学, 2012.
13 Arias J P M, Vazquez A, Escobar M M. Journal of Composite Materials, 2012, 46(18), 2271.
14 Li G W, Yu L, Wu Y C, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8), 1711 (in Chinese).
李国维, 余亮, 吴玉财, 等. 岩石力学与工程学报, 2014, 33(8), 1711.
15 Zeng X M, Lei Z L, Zhang W J, et al. Chinese Journal of Rock Mecha-nics and Engineering, 2002, 21(1), 143 (in Chinese).
曾宪明, 雷志梁, 张文巾, 等. 岩石力学与工程学报, 2002, 21(1), 143.
16 Zhang M Y, Kou H L, Bai X Y, et al. Geotechnical Mechanics, 2014, 35(4), 1069 (in Chinese).
张明义, 寇海磊, 白晓宇, 等. 岩土力学, 2014, 35(4), 1069.
17 Maranan G B, Manalo A C, Karunasena W, et al. Composite Structures, 2015, 11(132), 1113.
18 Bai X Y, Zhang M Y, Li W W, et al. Journal of Central South University (Natural Science Edition), 2015, 46(10), 3841 (in Chinese).
白晓宇, 张明义, 李伟伟, 等. 中南大学学报(自然科学版), 2015, 46(10), 3841.
19 Gooranorimi O, Suaris W, Nanni A. Engineering Structures, 2017, 146, 34.
20 Bai X Y, Zhang M Y, Wang Y H, et al. Civil Engineering and Environmental Engineering, 2018, 40(5), 78 (in Chinese).
白晓宇, 张明义, 王永洪, 等. 土木建筑与环境工程, 2018, 40(5), 78.
21 JGJ 476—2019, Anti-floating technical standard for construction enginee-ring, China Construction Industry Press, China, 2019 (in Chinese).
JGJ 476—2019, 建筑工程抗浮技术标准. 中国建筑工业出版社, 2019.
22 JGJ 120—2012, Technical specification for building foundation pit support, China Construction Industry Press, China, 2012 (in Chinese).
JGJ 120—2012, 建筑基坑支护技术规程. 中国建筑工业出版社, 2012.
23 Huang Z H, Li G W, Wang S J, et al. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5), 1008.
黄志怀, 李国维, 王思敬, 等. 岩石力学与工程学报, 2008, 27(5), 1008.
24 Wang H G. Experimental study on bonding performance of GFRP anti-floating anchor. Master's Thesis, Qingdao University of Technology, China, 2021 (in Chinese).
王海刚. GFRP抗浮锚杆黏结性能试验研究. 硕士学位论文, 青岛理工大学, 2021.
[1] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[2] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
[5] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[6] 默玉海, 庞凌燕, 刘千龙, 刘辉. 改性磷酸盐胶黏剂的制备及性能表征[J]. 材料导报, 2023, 37(14): 23020041-6.
[7] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[8] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[9] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[10] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[11] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[12] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[13] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[14] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[15] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed