Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030265-12    https://doi.org/10.11896/cldb.21030265
  金属与金属基复合材料 |
连铸保护渣技术标准体系研究进展
张飞1,2, 韩富年1, 卢友余1, 文光华1,*, 唐萍1
1 重庆大学材料科学与工程学院,重庆 400044
2 贵州省分析测试研究院,贵阳 550014
Research Progress on Standard System of Mold Fluxes for Continuous Casting
ZHANG Fei1,2, HAN Funian1, LU Youyu1, WEN Guanghua1,*, TANG Ping1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Guizhou Academy of Testing and Analysis, Guiyang 550014, China
下载:  全 文 ( PDF ) ( 16702KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 连铸保护渣是连铸过程用于生产各类型钢种的重要、必需的功能材料,具有保温、防止钢液氧化、吸附杂质、润滑、改善传热等功效。连铸保护渣技术标准体系对指导行业制定保护渣相关标准有重要作用,目前国内外标准化组织已进行了相关标准研制,但未形成健全的标准体系,仍有一些关键、重要的标准急需研制。因此,本文基于连铸保护渣生产工艺、冶金应用、微观结构、信息化等领域的标准研制原理,围绕连铸保护渣从原料配制、生产加工、产品质量和结晶器应用等整个生命周期的各个环节,系统地开展连铸保护渣技术标准体系研究。基于以上研究,本文建立连铸保护渣产品类型、产品性能和技术标准体系的三维空间模型,构建连铸保护渣技术标准体系框架和标准体系明细表,归纳和梳理了20项行业标准,提出了拟研制的29项连铸保护渣标准,其覆盖了基础、产品、方法、质量、生产加工、信息化领域的国际标准、行业标准和团体标准,并对方法标准中拟研制的标准进行了比较分析。通过对连铸保护渣技术标准体系进行研究,为行业开展连铸保护渣标准研制提供技术支撑和奠定理论基础,对加快连铸保护渣的国际流通、产品认证、质量追溯有重要作用,对推动生产高质量钢种及特殊钢种技术开发有重要战略意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张飞
韩富年
卢友余
文光华
唐萍
关键词:  连铸保护渣  生产工艺  冶金特性  标准体系  标准制定    
Abstract: Mold fluxes are an indispensable functional material that acted on the molten steel surface in the crystallizer for continuous casting, providing thermal insulation, preventing steel reoxidation, adsorbing or entrapping inclusions, lubricating steel strands, and controlling heat transfer. The technical standards system of mold fluxes plays an essential role in guiding the industry to formulate the technical standards of mold fluxes. At present, domestic and international standardization organizations have developed some relevant standards. However, a sound standards system has not yet been formed, and there are still some essential standards that urgently need to be developed. Therefore, based on the standardization principles in the fields of the production process, metallurgical application, microstructure, and information technology, this article systematically studied the technical standards of mold fluxes from each link of the whole life cycle, such as raw material preparation, production process, product quality and practical application. In this paper, a three-dimensional spatial model of the product type, product performance, and the corresponding technical standard system was also built. 20 published industry standards and 29 standards of mold fluxes to be developed were listed, covering international, industry, and group standards in the fields of foundation, product, method, quality, production processing, and information technology. Moreover, the standards to be developed were compared and analyzed. The technical standard system built provides technical support and a theoretical foundation to develop the standards of mold fluxes, promoting the circulation, certification, and quality traceability of mold fluxes. The above research has an important strategic significance to the production process optimization of high-quality and special steel grades.
Key words:  mold fluxes    production process    metallurgical property    standard system    standard-setting
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TF7  
基金资助: 国家自然科学基金(51574050);贵州科学院青年基金(202147)
通讯作者:  *wengh@cqu.edu.cn,文光华,重庆大学材料科学与工程学院教授、博士研究生导师。1984年7月本科毕业于重庆大学冶金及材料工程系化学冶金专业系,1996年12月在重庆大学冶金及材料工程系获工学博士学位。2006年11月至2007年10月在美国卡内基梅隆大学(Carnegie Mellon University)钢铁研究中心(CISR)作访问学者。主要从事无缺陷连铸坯控制技术、钢液中有害元素脱除方法、结晶器保护渣、冶金过程固体废弃物综合利用等研究。荣获国家教育部科技进步二等奖。近年来发表SCI和EI论文200余篇,获授权国家发明专利10余项。   
作者简介:  张飞,2014年6月毕业于重庆大学,获得工学硕士学位。现为重庆大学材料科学与工程学院博士研究生,在文光华教授的指导下进行研究。目前主要研究领域为连铸保护渣。
引用本文:    
张飞, 韩富年, 卢友余, 文光华, 唐萍. 连铸保护渣技术标准体系研究进展[J]. 材料导报, 2023, 37(3): 21030265-12.
ZHANG Fei, HAN Funian, LU Youyu, WEN Guanghua, TANG Ping. Research Progress on Standard System of Mold Fluxes for Continuous Casting. Materials Reports, 2023, 37(3): 21030265-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030265  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030265
1 Jung W C, Toshihiko E, Hiroyuki S. ISIJ International, 1998, 38(8), 834.
2 Wu Y H, James M H, Paul J F. Journal of the Australian Mathematical Society, 1994, 35, 263.
3 Taketo N, Tadao K, Kunio K. Transactions of the Iron and Steel Institute of Japan, 1984, 24, 950.
4 Guo L, Wang X, Zhan H. ISIJ International , 2007, 47(8), 1108.
5 Mills Kenneth C, Däcker Carl-Åke. In:The casting powders book, Sprin-ger Cham, London, 2017, pp. 280.
6 Hooli P O. Iron-making and Steelmaking, 2002, 29 (4), 293.
7 Takeuchi E, Brimacombe J K. Metallurgical and Materials Transactions B, 1984, 15(3), 493.
8 Tang P, Gao J X, Wen G H. Ironmaking & Steelmaking, 2017, 33 (3), 1(in Chinese).
唐萍, 高金星, 文光华. 炼钢, 2017, 33(3) 1.
9 Wang W, Lyu P, Zhou L, et al. JOM, 2018, 70, 1248.
10 Wei E F, Yang Y D, Feng C L, et al. Journal of Iron and Steel Research International, 2006, 13, 22.
11 Cai D X, Wang W L, Zhang L, et al. Journal of Iron and Steel Research International, 2019, 26, 385.
12 Zhou L J, Li H, Wang W L, et al. Metallurgical and Materials Transactions B, 2017, 48 (6), 2949.
13 Yu X, Wen G H, Tang P, et al. Materials Reports A: Review Papers, 2010, 24 (3), 101(in Chinese).
于雄, 文光华, 唐萍, 等. 材料导报:综述篇, 2010, 24 (3), 101.
14 Gao J X, Wen G H, Sun Q H, et al. Metallurgical & Materials Transactions B, 2015, 46(4), 1850.
15 Wang W L, Kenneth B, Alan C. Metallurgical and Materials Transactions B, 2008, 39, 66.
16 Zhou L, Wang W, Huang D, et al. Metallurgical and Materials Transactions B, 2012, 43, 925.
17 Zhang C, Wang Y, Hu L, et al.In: 6th International Symposium on High-Temperature Metallurgical Processing. Walt Disney World, Orlando, Florida, USA, 2016, pp. 707.
18 Seo M D, Shi C B, Cho J W, et al. Metallurgical and Mate-rials Transactions B, 2014, 45, 1874.
19 Liu Y Z, Wang W L, Ma F J, et al. Metallurgical and Materials Transactions B, 2015, 46, 1419.
20 Ma F J, Liu Y Z, Wang W L, et al. Metallurgical and Materials Transactions B, 2015, 46, 1902.
21 Yoon D W, Cho J W. Metallurgical and Materials Transactions B, 2017, 48, 1951.
22 Gu K Z, Wang W L, Wei J, et al. Metallurgical and Materials Transactions B, 2012, 43, 1393.
23 Wang W L, Li J, Zhou L, et al. Metals and Materials International, 2016, 22, 700.
24 Yang J, Cui H, Zhang J, et al. Metallurgical and Materials Transactions B, 2019, 50, 2636.
25 Mills K C, Fox A B. ISIJ International, 2003, 43 (10), 1479.
26 张晨, 蔡得祥. 中国专利, CN109550913B, 2020.
27 朱立光, 袁志鹏, 肖鹏程, 等. 中国专利, CN111604482A, 2020.
28 朱立光, 王杏娟, 肖鹏程, 等. 中国专利, CN111604484A, 2020.
29 曾建华, 张敏, 王谦, 等. 中国专利, CN111590039A, 2020.
30 王月, 陈永彦, 李晓阳, 等. 中国专利, CN108838355B, 2020.
31 王爱兰, 唐建平, 韩春鹏, 等. 中国专利, CN111974957A, 2020.
32 朱立光, 肖鹏程, 王杏娟, 等. 中国专利, CN111774542A, 2020.
33 朱立光, 肖鹏程, 王杏娟, 等. 中国专利, CN111604483A, 2020.
34 梁冠冬, 徐金岩, 秦教武, 等. 中国专利, CN109967707A, 2019.
35 王万林, 翟冰钰, 张磊, 等. 中国专利, CN111036868A, 2020.
36 陈永彦, 李晓阳, 杜振宇, 等. 中国专利, CN111360217A, 2020.
37 赵立, 左小坦, 陶群南, 等. 中国专利, CN111440923A, 2020.
38 赵小军, 聂文金. 中国专利, CN110918913A, 2020.
39 谢中志, 杨云. 中国专利, CN110315040A, 2020.
40 曾建华, 张敏, 王谦, 等. 中国专利, CN111570740A, 2020.
41 刘晓, 杜晓建, 翟俊. 中国专利, CN108856666B, 2020.
42 杜振宇, 李晓阳, 屈党军, 等. 中国专利, CN108465791B, 2020.
43 王万林, 张磊, 应国民, 等. 中国专利, CN110315039B, 2020.
44 屈党军, 李晓阳, 徐金岩, 等. 中国专利, CN110918914A, 2020.
45 Yao Z Y. Continuous Casting, 2014(5), 9(in Chinese).
姚增远. 连铸, 2014(5), 9.
46 Kromhout J A. Journal of Iron & Steel Research, 1988, 16 (6), 529.
47 He S P, You J L, Wang Q, et al. Spectroscopy and Spectral Analysis, 2008, 28(11), 2579 (in Chinese).
何生平, 尤静林, 王谦, 等. 光谱学与光谱分析, 2008, 28(11), 2579.
48 Gao J X. Fundamental research on the component, structure and properties of mold fluxes containing Al2O3 and CaF2. Ph.D. Thesis, Chongqing University, China, 2016(in Chinese).
高金星. 含Al2O3和CaF2连铸结晶器保护渣成分、结构和性能的基础研究. 博士学位论文, 重庆大学, 2016.
49 Gao J X, Wen G H, Huang T, et al. Spectroscopy and Spectral Analysis, 2016, 36(10), 3190 (in Chinese).
高金星, 文光华, 黄挺, 等. 光谱学与光谱分析, 2016, 36(10), 3190.
50 Chen J Y, Wang W L,Zhou L J, et al. Journal of Iron and Steel Research International, 2020, 28(5), 552.
51 Zhou L J, Li H, Wang W L, et al. Metallurgical and Materials Transactions B, 2018, 49, 2232.
52 Wang Q, Yang J A, Zhang C, et al. Journal of Iron and Steel Research International, 2019, 26(4), 374.
53 He S, Wang S, Jia B, et al. Metallurgical and Materials Transactions B, 2019, 50, 1503.
54 Yang C, Wen G, Sun Q, et al. Metallurgical & Materials Transactions B, 2017, 48(2), 1292.
55 Brien J A O, Marakas G M . Management information system, Pearson/Prentice Hall, USA, 2007, 52.
56 Roberto L, Francisco L, Antonio E M. Software-Practice and Experience, 2005, 35(3), 301.
57 Rossi D, Turrini E. In: Autonomic and Autonomous Systems and International Conference on Networking and Services. Papette, Tahiti, 2005, pp. 1.
58 Marie-Aline Van Ende, In-Ho Jung. Celebrating the Megascale, 2014, 54 (3), 489.
59 Kim M S, Kang Y B. A Reaction model to simulate composition change of mold flux during continuous casting of high Al steel, Springer International Publishing, USA, 2016, pp. 271.
60 Veman C.In: Standardization-a new discipline, Science and Technology Press, China, 1980, pp. 40(in Chinese).
魏尔曼. 标准化是一门新学科, 科学技术文献出版社, 1980, pp. 40.
61 Sanders T R B. In: The aims and principle of standardization, Science and Technology Press, China, 1994, pp.10(in Chinese).
桑德斯. 标准化的目的与原理, 科学技术文献出版社, 1994, pp. 10.
62 Li D M. Application technology of mold powder in continuous casting, Metallurgical Industry Press, China, 2008 (in Chinese).
李殿明. 连铸结晶器保护渣应用技术, 冶金工业出版社, 2008.
63 Liu Y, Zhang R Z, Ma E, et al. Continuous Casting, 2019, 44(5), 40(in Chinese).
刘泳, 张瑞忠, 马娥, 等. 连铸, 2019, 44(5), 40.
64 Wang Q. Theory and practice of mold flux for ultralow carbon steel in continuous casting. Ph.D. Thesis, Chongqing University,China, 1998 (in Chinese).
王谦. 超低碳钢连铸保护渣理论与实践. 博士学位论文, 重庆大学, 1998.
65 Xie B. Study on related basic theories of continuous casting mold fluxes and application in industry. Ph.D. Thesis, Chongqing University, China, 2004 (in Chinese).
谢兵. 连铸结晶器保护渣相关基础理论的研究及其应用实践. 博士学位论文, 重庆大学, 2004.
66 Piao Z L. Research on exploitation and metallurgical properties of CaO-Al2O3-TiO2-based mold flux for high titanium steel. Ph.D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
朴占龙. CaO-Al2O3-TiO2基高钛钢用保护渣开发及冶金特性研究. 博士学位论文, 北京科技大学, 2021.
67 Hu L. Effect of crystallization behavior and heat transfer of mold flux on magnetic field. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
胡浪. 磁场对结晶器保护渣结晶特性及传热性能的影响研究. 硕士学位论文, 重庆大学, 2016.
68 Yamauchi A, Sorimachi K, Sakuraya T, et al. ISIJ International, 2007, 33(1), 140.
69 Ozawa S, Susa M, Goto T, et al. ISIJ International, 2006, 46(3), 413.
70 Nakada H, Susa M, Seko Y, et al. ISIJ International, 2008, 48(4), 446.
71 Kim Y, Morita K. ISIJ International, 2014, 54(9), 2077.
72 Andersson S P. Ironmaking & Steelmaking, 2015, 42(6), 465.
73 Shibata H, Emi T, Waseda Y, et al. Tetsu-to-Hagane, 1996, 82(6), 504.
74 Hayashi M, Abas R A, Seetharaman S. ISIJ International, 2004, 44(4), 691.
75 Vermeulen Y, Divry E, Rigaud M. Canadian Metallurgical Quarterly, 2014, 43(4), 527.
76 Wen G H, Sridhar S, Tang P, et al. ISIJ International, 2007, 47(8), 1117.
77 Qi X, Wen G H, Tang P. Journal of Non-Crystalline Solids, 2008, 354(52-54), 5444.
78 Hao Z, Chen W, Lippold C. Metallurgical and Materials Transactions B, 2010, 41(4), 805.
79 Yang C, Wen G H, Sun Q, et al. International Journal of Heat & Mass Transfer, 2017, 110, 523.
80 Arutyunyan N A, Zaitsev A I, Koldaev A V, et al. Metallurgist, 2015, 58, 1086.
81 Yu B, Lv X W, Xiang S, et al. ISIJ International, 2015, 55(8), 1558.
82 Sha P F. Evolution of interfacial tension of molten steel and slag during variable temperature. Master's Thesis, Northeastern University, China, 2015 (in Chinese).
沙鹏飞. 变温过程渣钢界面张力的演变行为. 硕士学位论文, 东北大学, 2015.
83 Wen Y L. Experimental study on sintering properties and melting speed of continuous casting mold fluxes. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
温亚磊. 连铸保护渣烧结性能和熔化速度的实验研究. 硕士学位论文, 重庆大学, 2016.
84 Nakano T, Nagano K, Masuo N, et al. Nippon Steel Technical Report, Overseas, 1987, 34, 21.
85 Branion R V. Iron and Steelmaker, 1986, 13(9), 41.
86 Liu Y Q. Study on melting and rheological properties of fluoride-free mold fluxes. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
刘永庆. 连铸无氟结晶器保护渣的熔融及流变特性研究. 硕士学位论文, 重庆大学, 2006.
87 Wen G H, Tang P, Yang B, et al. ISIJ International, 2012, 52(7), 1179.
88 Hu X P, Zeng F Z, Yuan G Y, et al. Metal Materials and Metallurgical Engineering, 2019, 47(1), 20 (in Chinese).
胡洵璞, 曾凡政, 袁工阳, 等. 金属材料与冶金工程, 2019, 47(1), 20.
89 Zheng W, Wen Z Y, Li G Q, et al. Journal of Wuhan University of Science and Technology, 2014, 37(2), 97(in Chinese).
郑万, 温正勇, 李光强. 等. 武汉科技大学学报, 2014, 37(2), 97.
90 Qi X. Reseach of fluoride-free and titanium-bearing mold fluxes. Ph.D. Thesis, Chongqing University, China, 2009 (in Chinese).
漆鑫. 含钛无氟连铸结晶器保护渣的基础研究. 博士学位论文, 重庆大学, 2009.
91 Kashiwaya Y, Cramb A W. CAMP-ISIJ, 1998, 11, 19.
92 Kashiwaya Y, Nakauchi T, Pham K S, et al. ISIJ International, 2007, 47(1), 44.
93 Mutale C T, Cramb A W, Claudon T. Metallurgical and Materials Tran-sactions B, 2005, 36(3), 417.
94 Zhu C Y, Han W D, Liu C J, et al. Journal of Iron and Steel Research, 2005, 12(6), 23.
95 Xie Y J, Wang M C. Surface & Coatings Technology, 2006, 201(3-4), 691.
96 Lanyi M D, Rosa C J. Metallurgical Transactions B, 1981, 12(2), 287.
97 Zhen S, Zhen L, Wu A, et al. Rubber Science and Technology, 2018, 16(5), 50(in Chinese).
郑善亮, 郑丽娜, 吴爱芹, 等. 橡胶科技, 2018, 16(5), 50.
98 Tsutsumi K, Ohtake J I, Hino M. ISIJ International, 2000, 40(6), 601.
99 Gan Y, Chen D L, Yang W G. Iron and Steel, 1999, 34(4), 16(in Chinese).
干勇, 陈栋梁, 杨文改. 钢铁, 1999, 34(4), 16.
100Jiang C H, Yao M, Yang J H, et al. Systems and Installations, 2001(6), 37(in Chinese).
姜苍华, 姚曼, 杨建华, 等. 系统与装置, 2001(6), 37.
101Cheng H Y. Study on structure simulation and lubrication of mold flux film. Master's Thesis, Chongqing University, China, 2008 (in Chinese).
程红艳. 保护渣渣膜结构模拟及其润滑性能的研究. 硕士学位论文, 重庆大学, 2008.
102Wang Y X. Physical Testing, 2003(4), 21(in Chinese).
王玉霞. 物理测试, 2003(4), 21.
103Jin X, Wen G H, Tang P, et al. Physical Testing, 2007, 25(1), 33 (in Chinese).
靳星, 文光华, 唐萍, 等.物理测试, 2007, 25(1), 33.
[1] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed