Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4001-4006    https://doi.org/10.11896/cldb.19010029
  无机非金属及其复合材料 |
Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响
董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬
昆明理工大学材料科学与工程学院,昆明 650093
The Role of Ba and Ga Co-doping in Microstructure and Electrical Conductivity of a Garnet-type Solid State Electrolyte Li7La3Zr2O12
DONG Dazhang, ZHAO Mengyuan, XIE Hao, BIAN Lingfeng, YANG Xing, MENG Bin
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 3753KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相法合成了Ba与Ga共掺杂的Li7La3Zr2O12(LLZO)石榴石型固态电解质粉末,再结合常压烧结制备了Ba、Ga共掺杂LLZO样品。采用X射线衍射、扫描电镜、能谱分析和交流阻抗法对样品的物相结构、微观形貌、成分分布及电导率进行了表征。结果表明,在烧结温度1 100 ℃下得到了立方相的LLZO固态电解质。当Ga的含量在LLZO化学式中为0.15,Ba掺杂量从0增加至0.15(Ga0.15Bax-Li6.55+xLa3-xZr2O12,x=0~0.15)时,LLZO样品的平均晶粒尺寸从14 μm下降到4 μm,30 ℃时晶界电导率由1.54×10-5 S·cm-1提升到2.22×10-4 S·cm-1。Ba作为一种烧结剂,改善了材料的烧结性能,降低了材料的平均晶粒尺寸,使晶粒与晶粒连接得更紧密。Li6.7Ga0.15La2.85Ba0.15Zr2O12样品在30 ℃下的总电导率为2.11×10-4 S·cm-1,远高于单独掺杂Ga时Li6.55Ga0.15La3Zr2O12样品的总电导率(σ=1.40×10-5 S·cm-1),由此可见,Ba、Ga共掺杂极大地提高了LLZO的锂离子电导率
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董大彰
赵梦媛
解昊
边凌峰
杨星
孟彬
关键词:  Li7La3Zr2O12  石榴石型固态电解质  元素掺杂  电导率    
Abstract: Ba and Ga co-doped Li7La3Zr2O12(LLZO), a garnet-type lithium ion solid-state electrolyte was prepared by a two-step approach: synthesis of LLZO powers by conventional solid-state reaction and sintering in the atmosphere. Then, the crystal structure, microstructure, composition distribution and ionic conductivity were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectrometer and electrochemical impedance spectroscopy. It was found that the cubic phase LLZO could be obtained under the sintering temperature of 1 100 ℃. When the content of Ga in LLZO was 0.15, and the doping amount of Ba altered from 0 to 0.15 (Ga0.15Bax-Li6.55+xLa3-xZr2O12, x=0—0.15), the LLZO sample exhibited a drop in the average grain size from 14 μm to 4 μm and a rise in the grain boundary conductivity (30 ℃) from 1.54×10-5 S·cm-1 to 2.22×10-4 S·cm-1. As a kind of sintering agent, the Ba played an critical role in improving the sintering performance, reducing the average grain size, and promoting the bonding between grains in the LLZO samples. Notably, the Li6.7Ga0.15La2.85Ba0.15Zr2O12 sample presented a total conductivity σ of 2.11×10-4 S·cm-1 at 30 ℃, which was much higher than that of Li6.55Ga0.15La3Zr2O12 sample with single doping of Ga (σ=1.40×10-5 S·cm-1 at 30 ℃), demonstrating the significant contribution of Ba and Ga co-doping to the Li-ion electrical conductivity of LLZO.
Key words:  Li7La3Zr2O12    garnet-type solid state electrolyte    elemental doping    electrical conductivity
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51462018);云南省大学生创新创业训练计划项目(201710674203)
通讯作者:  hitmengbin@163.com   
作者简介:  董大彰,2019年6月毕业于昆明理工大学,获工程硕士学位,主要从事功能陶瓷和固态电解质领域的研究;孟彬,博士,教授,毕业于哈尔滨工业大学,在研国家自然科学基金等项目4项,主要从事功能陶瓷的研究,发表SCI、EI收录论文20余篇。
引用本文:    
董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
DONG Dazhang, ZHAO Mengyuan, XIE Hao, BIAN Lingfeng, YANG Xing, MENG Bin. The Role of Ba and Ga Co-doping in Microstructure and Electrical Conductivity of a Garnet-type Solid State Electrolyte Li7La3Zr2O12. Materials Reports, 2020, 34(4): 4001-4006.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010029  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4001
1 Li Y, Lian F, Zhou G Z. Journal of the Chinese Ceramic Society, 2013, 41(7),950(in Chinese).
李杨,连芳,周国治. 硅酸盐学报, 2013, 41(7),950.
2 Bachman J C, Muy S, Grimaud A, et al. Chemical Reviews, 2016, 116(1),140.
3 Murugan R, Thangadurai V, Weppner W. Angewandte Chemie-International Edition, 2007, 46(41),7778.
4 Li Y T, Han J T, Goodenough J B, et al. Journal of Solid State Chemistry, 2012, 209,278.
5 Awaka J, Takashima A, Kataoka K, et al. Chemistry Letters, 2011, 40(1), 60.
6 Jalem R, Yamamoto Y, Shiiba H, et al. Chemistry of Materials, 2013, 25(3),425.
7 Awaka J, Kijima N, Hayakawa H, et al. Journal of Solid State Chemistry, 2009, 182(8),2046.
8 Wagner R, Redhammer G J, Rettenwander D, et al. Chemistry of Mate-rials, 2016, 28(6),1861.
9 Rettenwander D, Redhammer G, Cheng L, et al. Chemistry of Materials, 2016, 28(7),2384.
10 Zha W P, Li J Y, Yang D J, et al. Materials China, 2017, 36(10),700(in Chinese).
查文平,李君阳,阳敦杰,等. 中国材料进展, 2017,36(10),700.
11 Kokal I, Somer M, Notten P H L, et al. Solid State Ionic, 2011, 185(1),42.
12 Miara L J, Richards W D, Wang Y E, et al. Chemistry of Materials, 2015, 27(11),4040.
13 Liu H D, Hu Z L, Ruan H B. Materials Review A: Review Papers, 2016, 30(7),71(in Chinese).
柳红东,胡忠利,阮海波. 材料导报:综述篇,2016, 30(7), 71.
14 Wolfenstine J, Ratchford J, Rangasamy E, et al. Materials Chemistry and Physics, 2012, 134(2-3),571.
15 Awaka J, Kijima N, Takahashi Y, et al. Solid State Ionics, 2009, 180(6),602.
16 Thangadurai V, Weppner W. Journal of Power Sources, 2005, 142(1-2), 339.
17 Murugan R, Thangadurai V, Weppner W. Ionics, 2007, 13(4), 195.
18 Allena J L, Wolfenstinea J, Rangasamyb E, et al. Journal of Power Sources, 2012, 206,315.
19 Wolfenstine J, Ratchford J, Rangasamy E, et al. Materials Chemistry and Physics, 2012,134(2-3), 571.
20 Rettenwander D, Langer J, Schmidt W, et al. Chemistry of Materials, 2015, 27(8), 3135.
21 Howard M A, Clemens O, Kendrick E, et al. Dalton Transactions, 2012, 41(39),12048.
22 Jalem R, Rushton M J D, Manalastas W, et al. Chemistry of Materials, 2015, 27(8), 2821.
23 Li Y, Yang T T, Wu W W, et al. Ionics, 2017, 44(2), 1538.
24 Chen X L, Cao T X, Xue M Z, et al. Solid State Ionics, 2018, 314, 92.
25 Cao Z Z, Cao X Y, Liu X T, et al. Ceramics International, 2015, 41(5), 6232.
26 Yang T T, Li Y, Wu W W, et al. Ceramics International, 2018, 44(2), 1538.
27 Lin C W, Tang Y, Song J, et al. Applied physics A Materials Science and Processing, 2018, 124(6), 439.
28 Murugan R, Thangadurai V,Weppner W. Ionics, 2007, 13(4), 195.
29 Murugan R, Thangadurai V. Journal of Power Sources, 2005, 142(1-2), 339.
30 Li L, Feng L L, Zhang Y Q, et al. Journal of Sol-Gel Science and Technology, 2017, 83(3), 660.
31 Ramakumar S, Deviannapoorani C, Murugan R, et al. Progress in Mate-rials Science, 2017, 88,325.
32 Murugan R, Weppner W, Thangadurai V, et al. Materials Science and Engineering B, 2007, 143(1-3),14.
33 Li C L, Liu Y F, Brinkman K S, et al. Journal of Alloys and Compounds, 2017, 695, 3744.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[3] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[4] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[5] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[6] 崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
[7] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[8] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[9] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[10] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[11] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[12] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[13] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[14] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[15] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed