Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030278-6    https://doi.org/10.11896/cldb.22030278
  金属与金属基复合材料 |
热处理温度对铝-铝-钢与铝-钛-钢爆炸复合板界面组织与性能的影响
穆晓彪1,2, 潘涛2, 熊玮1, 柴希阳2,*, 罗小兵2, 柴锋2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 钢铁研究总院工程用钢研究所,北京 100081
Effect of Heat Treatment Temperatures on the Interface Microstructures and Properties of Al-Al-steel and Al-Ti-steel Explosive Clad Plates
MU Xiaobiao1,2, PAN Tao2, XIONG Wei1, CHAI Xiyang2,*, LUO Xiaobing2, CHAI Feng2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 14876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价铝-铝-钢与铝-钛-钢两种爆炸复合板的可靠性,对比了不同热处理温度条件下铝-钢和铝-钛结合界面性能稳定性与组织演变。采用箱式电阻炉对铝-铝-钢和铝-钛-钢两种复合板进行250~550 ℃保温1 h的热处理,对热处理后的材料进行剪切性能和拉脱性能测试,并借助SEM和HRTEM等手段对界面反应相进行表征。结果表明,铝-钛-钢复合板具有更加优异的耐热稳定性,在热处理温度的影响下,界面性能损伤量更小,损伤速度更慢。铝-铝-钢在450 ℃以上出现连续层状金属间化合物,其类型为Fe2Al5和Fe4Al13;铝-钛-钢在500 ℃开始出现不连续的Ti-Al金属间化合物,550 ℃形成连续层状产物,其类型为TiAl3。相同热处理温度条件下,铝-钢界面反应产物厚度远大于铝-钛界面反应产物厚度。同时,对钢-铝和钛-铝界面反应相形成的热力学和动力学进行了分析,发现钛-铝界面比钢-铝界面的反应驱动力更小,扩散反应速率更慢,这可能是铝-钛界面具有更优异组织与性能稳定性的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
穆晓彪
潘涛
熊玮
柴希阳
罗小兵
柴锋
关键词:  铝-铝-钢复合板  铝-钛-钢复合板  热处理温度  金属间化合物  界面反应    
Abstract: In order to evaluate the reliability of Al-Al-steel and Al-Ti-steel explosive clad plates, the property stability and microstructure evolution of Al-steel and Al-Ti interface were compared under different heat treatment temperature. The Al-Al-steel and Al-Ti-steel clad plates were heat treated at 250—550 ℃ for 1 h in a box resistance furnace. After heat treatment, the shear properties and tensile properties of clad plates were tested. The evolution of the interfacial reaction phases was characterized by SEM and HRTEM. The results show that interface microstructure and property of Al-Ti-steel clad steel has more excellent heat stability. The heat treatment temperature damage to the interface performance is smaller and the damage speed is slower for Al-Ti-steel. The continuous intermetallic compounds appeared in Al-steel interface is above 450 ℃. The phase types are Fe2Al5 and Fe4Al13. The Ti-Al intermetallic compounds discontinuously appeared in Al-Ti interface is 500 ℃ and forms a conti-nuous layer product at 550 ℃, and the type is TiAl3. The thickness of the Al-steel interface product is much greater than the thickness of the Al-Ti interface reaction product. Meanwhile, the thermodynamics and kinetics of reaction phase formation in Fe-Al and Ti-Al systems were analyzed. It was found that the interface reaction driving force of Ti-Al system was smaller than that of Fe-Al system, and the diffusion reaction rate was slower, which may be the main reason for the better microstructure and performance stability of Al-Ti interface.
Key words:  Al-Al-steel clad plate    Al-Ti-steel clad plate    heat treatment temperature    intermetallic compounds    interface reaction
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG335.85  
基金资助: 辽宁省科技重大专项项目(2019JH1/10100014)
通讯作者:  *柴希阳,钢铁研究总院工程用钢研究所高级工程师。2011年武汉科技大学金属材料工程专业毕业,2014年钢铁研究总院材料学硕士毕业,2018年清华大学材料科学与工程专业毕业,毕业后进入到钢铁研究总院工程用钢所工作至今。目前主要从事船体结构钢、双金属复合材料、微合金化、控轧控冷、高温氧化等方面的研究工作。发表论文20余篇,包括Material Letters、Journal of Iron and steel Research、《稀有金属材料工程》《工程学报等》。 chaixiyang0728@163.com   
作者简介:  穆晓彪,2019年6月于北方民族大学获得工学学士学位。现为武汉科技大学材料与冶金学院和钢铁研究总院工程用钢研究所联合培养硕士研究生,在熊玮教授与柴希阳高工的指导下进行研究。目前主要研究领域为船用铝-钢复合板组织性能及疲劳行为。
引用本文:    
穆晓彪, 潘涛, 熊玮, 柴希阳, 罗小兵, 柴锋. 热处理温度对铝-铝-钢与铝-钛-钢爆炸复合板界面组织与性能的影响[J]. 材料导报, 2023, 37(19): 22030278-6.
MU Xiaobiao, PAN Tao, XIONG Wei, CHAI Xiyang, LUO Xiaobing, CHAI Feng. Effect of Heat Treatment Temperatures on the Interface Microstructures and Properties of Al-Al-steel and Al-Ti-steel Explosive Clad Plates. Materials Reports, 2023, 37(19): 22030278-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030278  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22030278
1 Trethewey K R, Little G T. Construction and Building Materials, 1989, 3(2), 64.
2 Carvalho G, Galvão I, Mendes R, et al. Journal of Materials Processing Technology, 2018, 262, 340.
3 Wu X, Shi C, Fang Z, et al. Materials & Design, 2021, 197, 109279.
4 Aceves S M, Espinosa-Loza F, Huber R. International Journal of Hydrogen Energy, 2015, 40(3), 1490.
5 Fang Z, Shi C, Sun Z, et al. Materials Research Express, 2019, 6(10), 1065f9.
6 Xu Z F, Yu C L. China Water Transport, 2008, 8(6), 156(in Chinese).
许芝芳, 于长亮. 中国水运, 2008, 8(6), 156.
7 Wu A, Song Z, Nakata K, et al. Materials & Design, 2015, 71(6), 85.
8 Yu M, Zhao H, Jiang Z, et al. Journal of Materials Science & Technology, 2019, 35(8), 1543.
9 Xu P Z, Hua X M, Shen C, et al. Materials Characterization, 2021, 178, 111236.
10 Zhang W H, Qiu X M, Sun D Q, et al. Science & Technology of Welding & Joining, 2011, 16(2), 153.
11 Chen L, Fourmentin R, Dermid J. Metallurgical and Materials Transactions A, 2008, 39(9), 2128.
12 Wang S H, Luo X B, Su H, et al. Journal of Iron and Steel Research, 2019, 31(10), 937(in Chinese).
王世宏, 罗小兵, 苏航, 等. 钢铁研究学报, 2019, 31(10), 937.
13 Liu M F, Zhang C S, Meng Z J, et al. Composites Part B, 2022, 230, 109507.
14 Cao M, Wang C J, Deng K k, et al. Journal of Materials Research and Technology, 2021, 14, 1655.
15 Cao R, Yu G, Chen J H, et al. Journal of Materials Processing Technology, 2013, 213(10), 1753
16 Shahverdi H R, Ghomashchi M R, Shabestari S, et al. Journal of Materials Processing Technology, 2002, 124(3), 345.
17 Choi J W, Liu H, Fujii H. Materials Science and Engineering A, 2018, 730, 168.
18 Assari A H, Eghbali B. Journal of Alloys and Compounds, 2019, 773, 50.
19 Pourali M, Abdollah-Zadeh A, Saeid T, et al. Journal of Alloys and Compounds, 2017, 715, 1.
20 Sun Y B, Zhao Y Q, Zhang D, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(8), 1722.
21 Wang Q. Study of interfacial structure and bonding strength for roll-bonding of aluminum film to iron plate. Ph. D. Thesis, Harbin Institute of Technology, 2014(in Chinese).
王谦. 铝薄膜/铁板轧制连接及界面结构与结合强度研究. 博士学位论文, 哈尔滨工业大学, 2014.
22 Kattner U R, Lin J C, Chang Y A. Metallurgical Transactions A, 1992, 23(8), 2081.
23 Han J C, Liu C, Jia Y, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(6), 1270(in Chinese).
韩建超, 刘畅, 贾燚, 等. 中国有色金属学报, 2020, 30(6), 1270.
24 Neumann G, Cornelis T. Self-diffusion and Impurity Diffusion in Pure Metals:Handbook of Experimental Data. Elsevier, UK, 2008, pp 47.
25 Liu B, Yang Q, Wang Y. Results in Physics, 2019, 12, 514.
26 Thiyaneshwaran N, Sivaprasad K, Ravisankar B. Scientific Reports, 2018, 8(1), 1.
27 Bouayad A, Gerometta C, Belkebir A, et al. Materials Science and Engineering, A, 2003, 363(1-2), 53.
28 Cui X, Fan G, Geng L, et al. Materials Science & Engineering A, 2012, 539, 337.
29 Chai X Y, Shi Z R, Chai F, et al. Rare Metal Materials and Enginee-ring, 2019, 48(8), 10(in Chinese).
柴希阳, 师仲然, 柴锋, 等. 稀有金属材料与工程, 2019, 48(8), 10.
30 Chen X, Li L, Zhou D J. The Chinese Journal of Nonferrous Metals, 2015(5), 1176(in Chinese).
陈鑫, 李龙, 周德敬. 中国有色金属学报, 2015(5), 1176.
[1] 李正宁, 喇培清, 孟倩, 王鸿鼎, 王文科, 康纪龙, 蒲永亮. 自蔓延高温合成先进材料的研究新进展[J]. 材料导报, 2023, 37(19): 22030161-8.
[2] 吴少鹏, 蔡晓兰, 周蕾, 栗文浩, 刘旭升, 王延坤. Cu粉预球磨和烧结工艺对Cu/6061Al界面结构的调控[J]. 材料导报, 2023, 37(14): 21120190-6.
[3] 陈亚军, 李思伟, 孟宪明, 史丽婷, 肖泽文. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 21080153-10.
[4] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[5] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[6] 王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
[7] 张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
[8] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[9] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[10] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[11] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[12] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[13] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[14] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[15] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed