Research Progress of Resistance Spot Welding of Aluminum/Steel Dissimilar Metals
CHEN Yajun1,*, LI Siwei2, MENG Xianming3, SHI Liting3, XIAO Zewen2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China 2 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 3 CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300300, China
Abstract: Aluminum/steel resistance spot welding (RSW) is an important technology to promote the application of lightweight materials in automotive industries. However, aluminum alloys and steels are significantly different with each other in thermal conductivity, electrical conductivity and thermal expansion. Moreover, a brittle layer of Al-Fe intermetallic compound (IMC) is prone to form at the Al/steel faying interface. These disadvantages make it quite challenging to obtain sound welding joints between aluminum alloys and steels. In recent years, the improved design of electrodes have enhanced the welding performance of Al/steel RSW, which combined with the process optimization leads to achieving acceptable quality of Al/steel RSW. Researchers revealed the growth mechanism of IMC and the fracture failure mechanism of aluminum/steel RSW joints. The influence of IMC thickness, weld nugget diameter, the steel coating types, welding production conditions and corrosion on the quality of aluminum/steel RSW joints were studied in detail. Various methods have also been proposed to improve the welding quality, such as optimizing the welding parameters, employing the cover plate or interlayer and hybrid welding, which ultimately guide the design of welding process and promote the application of aluminum/steel RSW in automotive industries. This contribution gives a review of the global research in Al/steel dissimilar RSW. It mainly focuses on the micro-level causal occurrences of IMC growth, fracture behavior of welded joints, factors influencing welding quality, process optimization methods, and simulation analysis of welding.
1 Hirsch J. Materials Transactions, 2011, 52(5), 818. 2 Gullino A, Matteis P, Aiuto F D. Metals, 2019, 9, 315. 3 Qiu R F, Shi H X, Zhang K K. Electric Welding Machine, 2010, 40(5), 150 (in Chinese). 邱然锋, 石红信, 张柯柯, 等. 电焊机, 2010, 40(5), 150. 4 Li B, Chen S J, Zhao P F. Hot Working Technology, 2019, 47(3), 13 (in Chinese). 李报, 陈思杰, 赵丕峰. 热加工工艺, 2019, 47(3), 13. 5 Manladan S M, Yusof F, Ramesh S, et al. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4), 605. 6 Xia Y J, Lei H Y, Li Y B, et al. China Mechanical Engineering, 2019, 31(1), 100 (in Chinese). 夏裕俊, 雷海洋, 李永兵, 等. 中国机械工程, 2019, 31(1), 100. 7 Chinese Welding Society. Welding handbook. Welding methods and equipment: volume 1, China Machine Press, China, 2001, pp.325 (in Chinese). 中国机械工程学会焊接学会. 焊接手册. 焊接方法及设备: 第一卷, 机械工业出版社, 2001, pp.325. 8 Dewey R D, Mapes R S. SAE Technical Paper, DOI:10. 4271/770208. 9 Sigler D R, Schroth J G, Karagoulis M J. In: Sheet Metal Welding Conference XIV. Livonia, MI, 2010, pp.1. 10 Sigler D R, Karagoulis M J. U. S. patent US20130048613, 2013. 11 Yang D S, Sigler D R, Carlson B E, et al. U. S. patent US20150231729, 2015. 12 Haselhuhn A S, Sigler D R, Carlson B E. In: Sheet Metal Welding Conference XVIII. Livonia, MI, 2018, pp.1. 13 Sigler D R, Carlson B E, Karagoulis M J. U. S. patent, US20150053654, 2015. 14 Sigler D R, Carlson B E, Myasnikova Y, et al. U. S. patent, US20180257166, 2018. 15 Carlson B E, Haselhuhn A S, Chen J, et al. MRS Bulletin, 2019, 44(8), 619. 16 Wan Z X, Wang H P, Chen N N, et al. Journal of Materials Processing Technology, 2017, 242, 12. 17 Zhang W H, Sun D Q, Han L J, et al. ISIJ International, 2011, 51(11), 1870. 18 Kang J D, Rao H M, Sigler D R, et al. Procedia Structural Integrity, 2017, 5, 1425. 19 Zhang W H. Study on resistance spot welding of dissimilar materials of aluminum alloy and high strength steel. Ph. D. Thesis, Jilin University, China, 2011 (in Chinese). 张伟华. 铝合金/高强钢异种金属电阻点焊研究. 博士学位论文, 吉林大学, 2011. 20 Che Y Y, Wang L, Sun D Q, et al. Journal of Materials Engineering and Performance, 2018, 27(10), 5532. 21 Qiu R F, Iwamoto C, Satonaka S. Materials Science and Technology, 2010, 26(2), 243. 22 Springer H, Kostka A, Payton E J, et al. Acta Materialia, 2011, 59, 1586. 23 Takata N, Nishimoto M, Kobayashi S, et al. Intermetallics, 2015, 67, 1. 24 Chen N N, Wang M, Wang H P, et al. Journal of Manufacturing Processes, 2018, 34, 424. 25 Qiu R F, Li J Y, He Y G, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(6), 1176 (in Chinese). 邱然锋, 李久勇, 贺玉刚, 等. 中国有色金属学报, 2017, 27(6), 1176. 26 Chen X, Li L, Zhou D J. Materials Reports, 2016, 30(7), 125 (in Chinese). 陈鑫, 李龙, 周德敬. 材料导报, 2016, 30(7), 125. 27 Song Q L, Sun Y, Fan Q Y. Hot Working Technology, 2012, 41(10), 114 (in Chinese). 宋群玲, 孙勇, 范启印. 热加工工艺, 2012, 41(10), 114. 28 He H, Gou W Q, Wang S X, et al. International Journal of Materials Research, 2019, 110(3), 194. 29 Liu J B. Hot dip aluminum plating of steel, Metallurgical Industry Press, China, 1995, pp.23 (in Chinese). 刘邦津. 钢材的热浸镀铝, 冶金工业出版社, 1995, pp.23. 30 Zhang H T. Study on the mechanism of joining aluminum to zinc-coated steel by CMT welding-brazing process. Ph. D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese). 张洪涛. 铝/镀锌钢板CMT熔-钎焊机理研究. 博士学位论文, 哈尔滨工业大学, 2008. 31 Huang J K, He C C, Shi Y, et al. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4), 1037 (in Chinese). 黄健康, 何翠翠, 石玗, 等. 吉林大学学报(工学版), 2014, 44(4), 1037. 32 Haidara F, Record M C, Duployer B, et al. Intermetallics, 2012, 23, 143. 33 Ding Z Y, Hu Q D, Lu W Q, et al. Materials Characterization, 2018, 136, 157. 34 Bouayad A, Gerometta C, Belkebir A, et al. Materials Science and Engineering A, 2003, 363, 53. 35 Rong J P, Kang Z F, Chen S H, et al. Materials Characterization, 2017, 132, 413. 36 Yousaf M, Iqbal J, Ajmal M. Materials Characterization, 2011, 62(5), 517. 37 Han W, Yin F C, Su X P, et al. Transactions of Materials and Heat Treatment, 2010, 31(6), 28 (in Chinese). 韩炜, 尹付成, 苏旭平, 等. 材料热处理学报, 2010, 31(6), 28. 38 Han Y N, Chen X, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27(2), 333. 39 Dangi B, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769, 777. 40 Hu S Q, Ma Y W, Li Y B, et al. Welding Journal, 2020, 99(8), 224S. 41 Cai N, Zhang Y Q, Wang P B, et al. Welding & Joining, 2021(1), 28 (in Chinese). 蔡宁, 张永强, 王鹏博, 等. 焊接, 2021(1), 28. 42 Chen Y Y, Lin C B, Mei C C. Journal of Materials Engineering and Performance, 2019, 28(8), 5195. 43 Haselhuhn A S, Chen C, Sigler D R, et al. In: Sheet Metal Welding Conference XVIII. Livonia, MI, 2018, pp.1. 44 Chen N N, Wang H P, Carlson B E, et al. Journal of Materials Processing Technology, 2017, 243, 347. 45 Chen N N, Wang H P, Carlson B E, et al. Journal of Materials Processing Technology, 2018, 252, 348. 46 Hu S Q, Haselhuhn A S, Ma Y W, et al. Materials and Design, 2021, 197, 109250. 47 Qiu R F, Iwamoto C, Satonaka S. Materials Characterization, 2009, 60(2), 156. 48 Chen N N. Study on fracture mechanism of Al/steel resistance spot welding joints and improvement stategy of resistance spot weld bonding performance. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese). 陈楠楠. 铝/钢电阻点焊接头断裂机理及胶接点焊性能提升策略研究. 博士学位论文, 上海交通大学, 2018. 49 Anstis G R, Chantikul P, Lawn B R, et al. Journal of the American Ceramic Society, 1981, 64(9), 533. 50 Kyokuta N, Koba M, Araki T, et al. Materials Transactions, 2013, 54(6), 994. 51 Shi L T, Kang J D, Yang J S, et al. In: 2020 China-SAE Congress and Exhibition. Shanghai, 2020, pp.320 (in Chinese). 史丽婷, 康继东, 杨建森, 等. 2020中国汽车工程学会年会暨展览会, 上海, 2020, pp.320. 52 Shi L T, Kang J D, Gesing M, et al. International Journal of Fatigue, 2020, 141, 105866. 53 Ibrahim I, Ito R, Kakiuchi T, et al. Science and Technology of Welding and Joining, 2016, 21(3), 223. 54 Shi L T, Kang J D, Shalchi Amirkhiz B, et al. Science and Technology of Welding and Joining, 2020, 25(2), 164. 55 Oh H L. In:Design of Fatigue and Fracture Resistant Structures, Abelkis P, Hudson C, ed. , ASTM International, USA, 1982, pp.296. 56 Pan N, Sheppard S. International Journal of Fatigue, 2002, 24, 519. 57 Barsom J M, Davidson J A, Imholf E J. SAE Technical Papers, 1985, 850369. 58 Cooper J F, Smith R A. International Journal of Fatigue, 1985, 7(3), 137. 59 Mcmahon J C. Fatigue crack initiation and early growth in tensile-shear spot weldments. Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA, 1986. 60 Radaj D. Stress Singularity, Engineering Fracture Mechanics, 1989, 34(2), 495. 61 Rupp A, Störzel K, Grubisic V. SAE Technical Papers, 1995, 950711. 62 Dong P. International Journal of Fatigue, 2001, 23(10), 865. 63 Rao H M, Kang J D, Shi L T, et al. International Journal of Fatigue, 2018, 116, 13. 64 Shi L T, Kang J D, Gesing M, et al. International Journal of Fatigue, 2020, 140, 105851. 65 Shi L T, Kang J D, Chen X, et al. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9), 2157. 66 Miyamoto K, Nakagawa S, Sugi C, et al. SAE International Journal of Material and Manufacturing, 2009, 2(1), 58. 67 Arghavani M R. Materials and Design, 2016, 102, 106. 68 Zhang Y Y, Sun D Q. Journal of Materials Engineering and Performance, 2017, 26, 2649. 69 Mortazavi S N, Marashi P, Pouranvari M, et al. Advanced Materials Research, 2011, 264-265, 384. 70 Kang J D, Chen Y H, Sigler D, et al. Engineering Failure Analysis, 2016, 69, 57. 71 American Welding Society. D8. 9M-2012, Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, American National Standards Institute, USA, 2012, pp.17. 72 Smith R A. In:Fracture and Fatigue: Elastoplasticity, Thin Sheet and Micromechanisms Problems, Radon J C, ed. , Pergamon Press, USA, 1980, pp.49. 73 Chao Y J. Science and Technology of Welding and Joining, 2003, 8(2), 133. 74 Pouranvari M, Asgari H R, Mosavizadch S M, et al. Science and Technology of Welding and Joining, 2007, 12(3), 217. 75 Marashi P, Pouranvari M, Sanaee S M H, et al. Materials Science and Technology, 2008, 24(12), 1506. 76 Sun X, Stephens E, Davies R, et al. SAE Technical Papers, DOI:10. 4271/2005-01-0906. 77 Pereira A M, Ferreira J M, Loureiro A, et al. Materials and Design, 2010, 31(5), 2454. 78 Ueda K, Ogura T, Nishiuchi S, et al. Materials Transactions, 2011, 52(5), 967. 79 Shin S, Park D J, Yu J, et al. Metals, 2019, 9, 410. 80 Shi L T, Kang J D, Shalchi-Amirkhiz B, et al. Journal of Materials Processing Technology, 2019, 264, 438. 81 Chen C, Kong L, Wang M, et al. Journal of Manufacturing Processes, 2019, 43, 300. 82 Hu S, Haselhuhn A S, Ma Y, et al. Journal of Manufacturing Processes, 2021, 68, 534. 83 Lei, H Y, Guo Y, Li Y B, et al. Welding Journal, 2019, 98(1), 14S. 84 Joo S M, Kim Y G, Oh M S. Applied Sciences, 2020, 10, 8116. 85 Maddela S, Carlson B E. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2019, 141(11), 111010-1. 86 Zedan M J, Doos Q M. Procedia Structural Integrity, 2018, 9, 37. 87 Qiu R F, Shi H X, Zhang K K, et al. Materials Characterization, 2010, 61, 684. 88 Xing Y F, Wang F, Lu J J, et al. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(3), 797. 89 Lei D, Wang H L, Zhou B, et al. Materials Reports, 2020, 34(Z2), 465 (in Chinese). 雷达, 王海林, 周彪, 等. 材料导报, 2020, 34(Z2), 465. 90 Cao X B, Li Z, Zhou X F, et al. Measurement, 2021, 171, 108766. 91 Qiu R F, Iwamoto C, Satonaka S. Journal of Materials Processing Technology, 2009, 209, 4186. 92 Xiao Z K, Ren J W, Zhang Y F, et al. Advanced Engineering Materials, 2020, 22(3), 1901520. 93 Zhang W H, Sun D Q, Han L J, et al. Materials and Design, 2014, 57, 186. 94 Wang N N, Qiu R F, Shi H X. Transactions of Materials and Heat Treatment, 2019, 40(1), 155 (in Chinese). 王楠楠, 邱然锋, 石红信. 材料热处理学报, 2019, 40(1), 155. 95 Das T, Das R, Paul J. Journal of Manufacturing Processes, 2020, 53, 260. 96 Azhari-Saray H, Sarkari-Khorrami M, Nademi-Babahadi A, et al. Intermetallics, 2020, 124, 106876. 97 Rahimi S, Movahedi M. Journal of Manufacturing Processes, 2020, 58, 429. 98 Chen J, Feng Z L, Wang H P, et al. Materials Science and Engineering A, 2018, 735, 145. 99 Wang J, Wang H P, Lu F G, et al. International Journal of Heat and Mass Transfer, 2015, 89, 1061. 100 Wan Z X, Wang H P, Wang M, et al. International Journal of Heat and Mass Transfer, 2016, 101, 749. 101 Lou M, Li Y, Wang Y, et al. Journal of Materials Processing Technology, 2014, 214, 2119. 102 Ling Z X, Luo Z, Feng Y Q, et al. Transactions of the China Welding Institution, 2017, 38(2), 101 (in Chinese). 凌展翔, 罗震, 冯悦峤, 等. 焊接学报, 2017, 38(2), 101. 103 Heidrich D, Zhang F, Fang X F. Journal of Materials Engineering and Performance, 2021, 30, 3806. 104 Niu S, Lou M, Ma Y, et al. Materials Science & Engineering A, 2020, 140329. 105 Niu S, Ma Y, Lou M, et al. Journal of Materials Processing Technology, 2020, 116830. 106 Zhang G T, Zhao H, Xu X H, et al. Journal of Manufacturing Processes, 2019, 44, 427. 107 Zhang G, Zhao H, Xu X, et al. Journal of Manufacturing Processes, 2019, 44, 19. 108 Zhao H, Zhang G, Zhang Q, et al. Journal of Manufacturing Processes, 2020, 50, 204. 109 Lu Y, Mayton E, Song H Y, et al. Materials and Design, 2019, 165, 107585. 110 Zhang C Q, Jin X, Wang W J, et al. Transactions of the China Welding Institution, 2019, 40(9), 151 (in Chinese). 张昌青, 金鑫, 王维杰, 等. 焊接学报, 2019, 40(9), 151. 111 Chen N N, Wang H P, Wang M, et al. Journal of Materials Processing Technology, 2019, 265, 158.