Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21080153-10    https://doi.org/10.11896/cldb.21080153
  金属与金属基复合材料 |
铝/钢异种材料电阻点焊研究进展
陈亚军1,*, 李思伟2, 孟宪明3, 史丽婷3, 肖泽文2
1 中国民航大学中欧航空工程师学院,天津 300300
2 中国民航大学航空工程学院,天津 300300
3 中汽研(天津)汽车工程研究院有限公司,天津 300300
Research Progress of Resistance Spot Welding of Aluminum/Steel Dissimilar Metals
CHEN Yajun1,*, LI Siwei2, MENG Xianming3, SHI Liting3, XIAO Zewen2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
2 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
3 CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300300, China
下载:  全 文 ( PDF ) ( 7392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝/钢电阻点焊技术是促进铝/钢混合轻量化技术在汽车产业应用的关键技术之一,但铝合金与钢材的传热性、导电性和热膨胀性的差异较大,且电阻点焊接头界面会生成脆性的金属间化合物(IMC)层,因此难以形成良好焊接。近年来,改进设计后的电极提高了铝/钢电阻点焊的焊接性能,并且由于焊接工艺的优化,实现了铝/钢电阻点焊的高质量连接。学者们探究了铝/钢接头界面IMC的生长机理和接头的断裂失效机理,也研究了IMC厚度、熔核直径、钢涂层类型、焊接工况和腐蚀对点焊接头性能的影响,并通过优化焊接参数、引入垫片或中间层及复合焊接等方式来提高焊接质量,以最终指导铝/钢电阻点焊焊接工艺设计并推动其工程应用。本文主要从IMC的生长机理、接头断裂失效行为、焊接质量的影响因素、工艺优化方法和焊接仿真分析等方面综述铝/钢异种材料电阻点焊的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚军
李思伟
孟宪明
史丽婷
肖泽文
关键词:  铝/钢异种材料  电阻点焊  金属间化合物  失效机理  力学性能    
Abstract: Aluminum/steel resistance spot welding (RSW) is an important technology to promote the application of lightweight materials in automotive industries. However, aluminum alloys and steels are significantly different with each other in thermal conductivity, electrical conductivity and thermal expansion. Moreover, a brittle layer of Al-Fe intermetallic compound (IMC) is prone to form at the Al/steel faying interface. These disadvantages make it quite challenging to obtain sound welding joints between aluminum alloys and steels. In recent years, the improved design of electrodes have enhanced the welding performance of Al/steel RSW, which combined with the process optimization leads to achieving acceptable quality of Al/steel RSW. Researchers revealed the growth mechanism of IMC and the fracture failure mechanism of aluminum/steel RSW joints. The influence of IMC thickness, weld nugget diameter, the steel coating types, welding production conditions and corrosion on the quality of aluminum/steel RSW joints were studied in detail. Various methods have also been proposed to improve the welding quality, such as optimizing the welding parameters, employing the cover plate or interlayer and hybrid welding, which ultimately guide the design of welding process and promote the application of aluminum/steel RSW in automotive industries. This contribution gives a review of the global research in Al/steel dissimilar RSW. It mainly focuses on the micro-level causal occurrences of IMC growth, fracture behavior of welded joints, factors influencing welding quality, process optimization methods, and simulation analysis of welding.
Key words:  aluminum/steel dissimilar materials    resistance spot welding    intermetallic compound    failure mechanism    mechanical property
发布日期:  2023-07-10
ZTFLH:  TG453  
基金资助: 国家自然科学基金(11972364);中国博士后科学基金(2021M693472)
通讯作者:  *陈亚军,中国民航大学教授、硕士研究生导师,国际焊接工程师。2010年毕业于天津大学,获得材料加工工程博士学位。主要从事结构与材料方向研究,获得中国航空运输协会民航科学技术一等奖。在国内外重要期刊发表文章60余篇。yjchen@cauc.edu.cn   
引用本文:    
陈亚军, 李思伟, 孟宪明, 史丽婷, 肖泽文. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 21080153-10.
CHEN Yajun, LI Siwei, MENG Xianming, SHI Liting, XIAO Zewen. Research Progress of Resistance Spot Welding of Aluminum/Steel Dissimilar Metals. Materials Reports, 2023, 37(13): 21080153-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080153  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21080153
1 Hirsch J. Materials Transactions, 2011, 52(5), 818.
2 Gullino A, Matteis P, Aiuto F D. Metals, 2019, 9, 315.
3 Qiu R F, Shi H X, Zhang K K. Electric Welding Machine, 2010, 40(5), 150 (in Chinese).
邱然锋, 石红信, 张柯柯, 等. 电焊机, 2010, 40(5), 150.
4 Li B, Chen S J, Zhao P F. Hot Working Technology, 2019, 47(3), 13 (in Chinese).
李报, 陈思杰, 赵丕峰. 热加工工艺, 2019, 47(3), 13.
5 Manladan S M, Yusof F, Ramesh S, et al. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4), 605.
6 Xia Y J, Lei H Y, Li Y B, et al. China Mechanical Engineering, 2019, 31(1), 100 (in Chinese).
夏裕俊, 雷海洋, 李永兵, 等. 中国机械工程, 2019, 31(1), 100.
7 Chinese Welding Society. Welding handbook. Welding methods and equipment: volume 1, China Machine Press, China, 2001, pp.325 (in Chinese).
中国机械工程学会焊接学会. 焊接手册. 焊接方法及设备: 第一卷, 机械工业出版社, 2001, pp.325.
8 Dewey R D, Mapes R S. SAE Technical Paper, DOI:10. 4271/770208.
9 Sigler D R, Schroth J G, Karagoulis M J. In: Sheet Metal Welding Conference XIV. Livonia, MI, 2010, pp.1.
10 Sigler D R, Karagoulis M J. U. S. patent US20130048613, 2013.
11 Yang D S, Sigler D R, Carlson B E, et al. U. S. patent US20150231729, 2015.
12 Haselhuhn A S, Sigler D R, Carlson B E. In: Sheet Metal Welding Conference XVIII. Livonia, MI, 2018, pp.1.
13 Sigler D R, Carlson B E, Karagoulis M J. U. S. patent, US20150053654, 2015.
14 Sigler D R, Carlson B E, Myasnikova Y, et al. U. S. patent, US20180257166, 2018.
15 Carlson B E, Haselhuhn A S, Chen J, et al. MRS Bulletin, 2019, 44(8), 619.
16 Wan Z X, Wang H P, Chen N N, et al. Journal of Materials Processing Technology, 2017, 242, 12.
17 Zhang W H, Sun D Q, Han L J, et al. ISIJ International, 2011, 51(11), 1870.
18 Kang J D, Rao H M, Sigler D R, et al. Procedia Structural Integrity, 2017, 5, 1425.
19 Zhang W H. Study on resistance spot welding of dissimilar materials of aluminum alloy and high strength steel. Ph. D. Thesis, Jilin University, China, 2011 (in Chinese).
张伟华. 铝合金/高强钢异种金属电阻点焊研究. 博士学位论文, 吉林大学, 2011.
20 Che Y Y, Wang L, Sun D Q, et al. Journal of Materials Engineering and Performance, 2018, 27(10), 5532.
21 Qiu R F, Iwamoto C, Satonaka S. Materials Science and Technology, 2010, 26(2), 243.
22 Springer H, Kostka A, Payton E J, et al. Acta Materialia, 2011, 59, 1586.
23 Takata N, Nishimoto M, Kobayashi S, et al. Intermetallics, 2015, 67, 1.
24 Chen N N, Wang M, Wang H P, et al. Journal of Manufacturing Processes, 2018, 34, 424.
25 Qiu R F, Li J Y, He Y G, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(6), 1176 (in Chinese).
邱然锋, 李久勇, 贺玉刚, 等. 中国有色金属学报, 2017, 27(6), 1176.
26 Chen X, Li L, Zhou D J. Materials Reports, 2016, 30(7), 125 (in Chinese).
陈鑫, 李龙, 周德敬. 材料导报, 2016, 30(7), 125.
27 Song Q L, Sun Y, Fan Q Y. Hot Working Technology, 2012, 41(10), 114 (in Chinese).
宋群玲, 孙勇, 范启印. 热加工工艺, 2012, 41(10), 114.
28 He H, Gou W Q, Wang S X, et al. International Journal of Materials Research, 2019, 110(3), 194.
29 Liu J B. Hot dip aluminum plating of steel, Metallurgical Industry Press, China, 1995, pp.23 (in Chinese).
刘邦津. 钢材的热浸镀铝, 冶金工业出版社, 1995, pp.23.
30 Zhang H T. Study on the mechanism of joining aluminum to zinc-coated steel by CMT welding-brazing process. Ph. D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese).
张洪涛. 铝/镀锌钢板CMT熔-钎焊机理研究. 博士学位论文, 哈尔滨工业大学, 2008.
31 Huang J K, He C C, Shi Y, et al. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4), 1037 (in Chinese).
黄健康, 何翠翠, 石玗, 等. 吉林大学学报(工学版), 2014, 44(4), 1037.
32 Haidara F, Record M C, Duployer B, et al. Intermetallics, 2012, 23, 143.
33 Ding Z Y, Hu Q D, Lu W Q, et al. Materials Characterization, 2018, 136, 157.
34 Bouayad A, Gerometta C, Belkebir A, et al. Materials Science and Engineering A, 2003, 363, 53.
35 Rong J P, Kang Z F, Chen S H, et al. Materials Characterization, 2017, 132, 413.
36 Yousaf M, Iqbal J, Ajmal M. Materials Characterization, 2011, 62(5), 517.
37 Han W, Yin F C, Su X P, et al. Transactions of Materials and Heat Treatment, 2010, 31(6), 28 (in Chinese).
韩炜, 尹付成, 苏旭平, 等. 材料热处理学报, 2010, 31(6), 28.
38 Han Y N, Chen X, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27(2), 333.
39 Dangi B, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769, 777.
40 Hu S Q, Ma Y W, Li Y B, et al. Welding Journal, 2020, 99(8), 224S.
41 Cai N, Zhang Y Q, Wang P B, et al. Welding & Joining, 2021(1), 28 (in Chinese).
蔡宁, 张永强, 王鹏博, 等. 焊接, 2021(1), 28.
42 Chen Y Y, Lin C B, Mei C C. Journal of Materials Engineering and Performance, 2019, 28(8), 5195.
43 Haselhuhn A S, Chen C, Sigler D R, et al. In: Sheet Metal Welding Conference XVIII. Livonia, MI, 2018, pp.1.
44 Chen N N, Wang H P, Carlson B E, et al. Journal of Materials Processing Technology, 2017, 243, 347.
45 Chen N N, Wang H P, Carlson B E, et al. Journal of Materials Processing Technology, 2018, 252, 348.
46 Hu S Q, Haselhuhn A S, Ma Y W, et al. Materials and Design, 2021, 197, 109250.
47 Qiu R F, Iwamoto C, Satonaka S. Materials Characterization, 2009, 60(2), 156.
48 Chen N N. Study on fracture mechanism of Al/steel resistance spot welding joints and improvement stategy of resistance spot weld bonding performance. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese).
陈楠楠. 铝/钢电阻点焊接头断裂机理及胶接点焊性能提升策略研究. 博士学位论文, 上海交通大学, 2018.
49 Anstis G R, Chantikul P, Lawn B R, et al. Journal of the American Ceramic Society, 1981, 64(9), 533.
50 Kyokuta N, Koba M, Araki T, et al. Materials Transactions, 2013, 54(6), 994.
51 Shi L T, Kang J D, Yang J S, et al. In: 2020 China-SAE Congress and Exhibition. Shanghai, 2020, pp.320 (in Chinese).
史丽婷, 康继东, 杨建森, 等. 2020中国汽车工程学会年会暨展览会, 上海, 2020, pp.320.
52 Shi L T, Kang J D, Gesing M, et al. International Journal of Fatigue, 2020, 141, 105866.
53 Ibrahim I, Ito R, Kakiuchi T, et al. Science and Technology of Welding and Joining, 2016, 21(3), 223.
54 Shi L T, Kang J D, Shalchi Amirkhiz B, et al. Science and Technology of Welding and Joining, 2020, 25(2), 164.
55 Oh H L. In:Design of Fatigue and Fracture Resistant Structures, Abelkis P, Hudson C, ed. , ASTM International, USA, 1982, pp.296.
56 Pan N, Sheppard S. International Journal of Fatigue, 2002, 24, 519.
57 Barsom J M, Davidson J A, Imholf E J. SAE Technical Papers, 1985, 850369.
58 Cooper J F, Smith R A. International Journal of Fatigue, 1985, 7(3), 137.
59 Mcmahon J C. Fatigue crack initiation and early growth in tensile-shear spot weldments. Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA, 1986.
60 Radaj D. Stress Singularity, Engineering Fracture Mechanics, 1989, 34(2), 495.
61 Rupp A, Störzel K, Grubisic V. SAE Technical Papers, 1995, 950711.
62 Dong P. International Journal of Fatigue, 2001, 23(10), 865.
63 Rao H M, Kang J D, Shi L T, et al. International Journal of Fatigue, 2018, 116, 13.
64 Shi L T, Kang J D, Gesing M, et al. International Journal of Fatigue, 2020, 140, 105851.
65 Shi L T, Kang J D, Chen X, et al. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9), 2157.
66 Miyamoto K, Nakagawa S, Sugi C, et al. SAE International Journal of Material and Manufacturing, 2009, 2(1), 58.
67 Arghavani M R. Materials and Design, 2016, 102, 106.
68 Zhang Y Y, Sun D Q. Journal of Materials Engineering and Performance, 2017, 26, 2649.
69 Mortazavi S N, Marashi P, Pouranvari M, et al. Advanced Materials Research, 2011, 264-265, 384.
70 Kang J D, Chen Y H, Sigler D, et al. Engineering Failure Analysis, 2016, 69, 57.
71 American Welding Society. D8. 9M-2012, Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, American National Standards Institute, USA, 2012, pp.17.
72 Smith R A. In:Fracture and Fatigue: Elastoplasticity, Thin Sheet and Micromechanisms Problems, Radon J C, ed. , Pergamon Press, USA, 1980, pp.49.
73 Chao Y J. Science and Technology of Welding and Joining, 2003, 8(2), 133.
74 Pouranvari M, Asgari H R, Mosavizadch S M, et al. Science and Technology of Welding and Joining, 2007, 12(3), 217.
75 Marashi P, Pouranvari M, Sanaee S M H, et al. Materials Science and Technology, 2008, 24(12), 1506.
76 Sun X, Stephens E, Davies R, et al. SAE Technical Papers, DOI:10. 4271/2005-01-0906.
77 Pereira A M, Ferreira J M, Loureiro A, et al. Materials and Design, 2010, 31(5), 2454.
78 Ueda K, Ogura T, Nishiuchi S, et al. Materials Transactions, 2011, 52(5), 967.
79 Shin S, Park D J, Yu J, et al. Metals, 2019, 9, 410.
80 Shi L T, Kang J D, Shalchi-Amirkhiz B, et al. Journal of Materials Processing Technology, 2019, 264, 438.
81 Chen C, Kong L, Wang M, et al. Journal of Manufacturing Processes, 2019, 43, 300.
82 Hu S, Haselhuhn A S, Ma Y, et al. Journal of Manufacturing Processes, 2021, 68, 534.
83 Lei, H Y, Guo Y, Li Y B, et al. Welding Journal, 2019, 98(1), 14S.
84 Joo S M, Kim Y G, Oh M S. Applied Sciences, 2020, 10, 8116.
85 Maddela S, Carlson B E. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2019, 141(11), 111010-1.
86 Zedan M J, Doos Q M. Procedia Structural Integrity, 2018, 9, 37.
87 Qiu R F, Shi H X, Zhang K K, et al. Materials Characterization, 2010, 61, 684.
88 Xing Y F, Wang F, Lu J J, et al. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(3), 797.
89 Lei D, Wang H L, Zhou B, et al. Materials Reports, 2020, 34(Z2), 465 (in Chinese).
雷达, 王海林, 周彪, 等. 材料导报, 2020, 34(Z2), 465.
90 Cao X B, Li Z, Zhou X F, et al. Measurement, 2021, 171, 108766.
91 Qiu R F, Iwamoto C, Satonaka S. Journal of Materials Processing Technology, 2009, 209, 4186.
92 Xiao Z K, Ren J W, Zhang Y F, et al. Advanced Engineering Materials, 2020, 22(3), 1901520.
93 Zhang W H, Sun D Q, Han L J, et al. Materials and Design, 2014, 57, 186.
94 Wang N N, Qiu R F, Shi H X. Transactions of Materials and Heat Treatment, 2019, 40(1), 155 (in Chinese).
王楠楠, 邱然锋, 石红信. 材料热处理学报, 2019, 40(1), 155.
95 Das T, Das R, Paul J. Journal of Manufacturing Processes, 2020, 53, 260.
96 Azhari-Saray H, Sarkari-Khorrami M, Nademi-Babahadi A, et al. Intermetallics, 2020, 124, 106876.
97 Rahimi S, Movahedi M. Journal of Manufacturing Processes, 2020, 58, 429.
98 Chen J, Feng Z L, Wang H P, et al. Materials Science and Engineering A, 2018, 735, 145.
99 Wang J, Wang H P, Lu F G, et al. International Journal of Heat and Mass Transfer, 2015, 89, 1061.
100 Wan Z X, Wang H P, Wang M, et al. International Journal of Heat and Mass Transfer, 2016, 101, 749.
101 Lou M, Li Y, Wang Y, et al. Journal of Materials Processing Technology, 2014, 214, 2119.
102 Ling Z X, Luo Z, Feng Y Q, et al. Transactions of the China Welding Institution, 2017, 38(2), 101 (in Chinese).
凌展翔, 罗震, 冯悦峤, 等. 焊接学报, 2017, 38(2), 101.
103 Heidrich D, Zhang F, Fang X F. Journal of Materials Engineering and Performance, 2021, 30, 3806.
104 Niu S, Lou M, Ma Y, et al. Materials Science & Engineering A, 2020, 140329.
105 Niu S, Ma Y, Lou M, et al. Journal of Materials Processing Technology, 2020, 116830.
106 Zhang G T, Zhao H, Xu X H, et al. Journal of Manufacturing Processes, 2019, 44, 427.
107 Zhang G, Zhao H, Xu X, et al. Journal of Manufacturing Processes, 2019, 44, 19.
108 Zhao H, Zhang G, Zhang Q, et al. Journal of Manufacturing Processes, 2020, 50, 204.
109 Lu Y, Mayton E, Song H Y, et al. Materials and Design, 2019, 165, 107585.
110 Zhang C Q, Jin X, Wang W J, et al. Transactions of the China Welding Institution, 2019, 40(9), 151 (in Chinese).
张昌青, 金鑫, 王维杰, 等. 焊接学报, 2019, 40(9), 151.
111 Chen N N, Wang H P, Wang M, et al. Journal of Materials Processing Technology, 2019, 265, 158.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed