Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1206-1214    https://doi.org/10.11896/cldb.17070037
  金属与金属基复合材料 |
合金化对不锈钢耐蚀性能影响的研究进展
毕凤琴, 周帮, 王勇
东北石油大学机械科学与工程学院,大庆 163318
Effect of Alloying on Anti-corrosion Performance of Stainless Steel: a Review
BI Fengqin, ZHOU Bang, WANG Yong
School of mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
下载:  全 文 ( PDF ) ( 5059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不锈钢以其自身所具有的高度稳定特性,在生活和工业尤其是石油化工行业中得到越来越广泛的应用,成为当今必不可少的材料之一。然而,作为当前材料损失三大世界难题之一的金属腐蚀,则成为不锈钢材料进一步扩展使用领域的主要壁垒。目前,解决不锈钢材料腐蚀的主要措施有涂层及改变材料中的元素和含量(合金化)。涂层法的防护研究已取得了一定的进展,但仍存在着严重不足,涂料在生产和应用过程中对环境造成的二次污染,使其本身丧失了生存的能力。在石油化工行业中的材料腐蚀,不仅仅是来自于化工介质的直接侵蚀,更多的是在实际生产中的高温、高压和连续操作条件下综合作用的结果。而以改变材料的元素和含量为主的防护措施,不仅降低了涂层防护的弊端,而且能有效地改善石油化工管线设备的服役寿命。因此,近年来该方法已成为该领域的研究热点。
合金化作为提高不锈钢耐腐蚀性能的重要途径之一,通过控制引入的微量元素种类和含量,充分挖掘微量元素的改善潜力是当前不锈钢合金化的主要方向。微量合金元素的可控加入,除了会改变原有主合金元素形成析出相的析出过程、分布、结构等来改善基体的性能,更多的作用形式则是通过自身形成特定的析出相,起到细化晶粒和强化等作用。因此,合理控制引入元素的种类和用量,是得到特定析出相进而实现改善不锈钢性能的关键。迄今为止,关于通过掺杂合金元素来提高不锈钢的耐腐蚀性能的研究工作,主要集中于单一掺杂常见的合金元素或者稀土元素对不锈钢材料的性能改善等方面。相关研究表明,相较于常见的合金元素,其他的微量元素如Co、Nb、Ru等同样在掺杂量较少的前提下能够实现对不锈钢耐蚀性能的优化。此外,在合金化过程中,复合添加合金元素既保持了单一元素自身的特定优势,也可以借助与其他元素间的相互作用达到较优异的改善效果。同时,大量的研究结果也发现,无论是单一或复合添加合金元素,合金元素的加入量对不锈钢中掺杂合金元素的改善作用至关重要。
本文从改善不锈钢耐蚀性角度出发,总结了近些年合金化对不锈钢耐蚀性能影响的研究进展,同时对不同合金元素共存时对不锈钢耐蚀性能的影响进行了总结。在此基础上,指出了在不锈钢耐腐蚀研究和改善其耐蚀性能过程中存在的问题、可能的改善措施及未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕凤琴
周帮
王勇
关键词:  不锈钢  合金元素  协同作用  耐蚀性能  稀土元素    
Abstract: Stainless steel holds widespread application in daily life and industry, especially in petrochemical industry, owing to its high mechanical strength, generally good oxidation resistance at complex environment and excellent comprehensive properties. Unfortunately, stainless steel cannot ether escape from corrosion, one of the three tough problems causing the loss of materials, which seriously blocks the further application of stainless steel. Presently, there are primarily two approaches to prevent metal from corrosion, namely coating and changing the element and content of the materials (alloying). Certain progress has been achieved in study of coating protection, but there are still serious deficiencies. The secondary pollution caused by coating in the process of production and application deprives itself of the room for survival. Besides, the corrosion of materials in petrochemical industry is not only the direct erosion of chemical medium, but also the result of the combined action of high temperature, high pressure and continuous operation in practical production. Accordingly, the protective approach that mainly change the elements and contents of materials has become the research focus in this area, because it can not only overcome some malpractice of coating protection, but also effectively improve service life of petrochemical pipeline equipment.
Alloying is one of the important approaches to improve the corrosion resistance of stainless steel. And it is the main stream of stainless steel alloying to fully explore the potential of microelements by controlling the types and contents of the introduced microelements. By controlled addition of microelements, the performance of the matrix will be enhanced due to the alteration of the precipitation process, distribution and structure of the original alloy elements; more importantly, grain refinement and strengthening will be achieved through the specific precipitated phase of the microelements in the alloying process. Consequently, it is the key to obtain specific precipitates and achieve performance improvement by reasonably controlling the type and amount of introduced elements. Up to now, the researches on improving corrosion resistance of stainless steel by doping alloying elements are mainly focused on doping single alloying elements or rare earth elements. Some related studies have demonstrated that the addition of trace Co, Nb, Ru, is also capable of optimizing the corrosion resistance of stainless steel. In addition, the combined additions of alloying elements not only preserve the specific advantages of a single element, but also boost the effect through the interaction between elements. meanwhile, numerous research results have demonstrated that the addition amount of alloying elements play a dominant role in improving the performance of the alloy, regardless of the single or compound doping.
From the point of view of improving the corrosion resistance of stainless steel, we summarize research progress of the effects of alloying elements, rare earth elements, other microelements, as well as the existence of various alloying elements on the anti-corrosion performance of stainless steel. meanwhile, we point out the existing problems, the improvement measures and development trends in the research of corrosion beha-vior of stainless steel.
Key words:  stainless steel    alloy element    synergistic effect    anti-corrosion performance    rare earth element
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TQ178  
基金资助: 国家自然科学基金(51401051)
通讯作者:  bfq698@sina.com   
作者简介:  毕凤琴,东北石油大学机械科学与工程学院教授、硕士研究生导师。1990年7月本科毕业于东北石油大学机械学院,2008年在东北石油大学油气储运工程专业取得博士学位,2008—2010年在中国石油大学(北京)进行博士后研究工作。主要从事材料腐蚀与防护技术及表面工程、材料失效分析与寿命预测和材料组织结构与性能的研究,先后承担了国家重大专项、省部级、市局级及横向科研课题20余项。周帮,2016年6月毕业于齐齐哈尔大学,获得工学学士学位。现为东北石油大学机械科学与工程学院硕士研究生,在毕凤琴教授的指导下进行研究。目前主要研究领域为金属的腐蚀与防护。
引用本文:    
毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
BI Fengqin, ZHOU Bang, WANG Yong. Effect of Alloying on Anti-corrosion Performance of Stainless Steel: a Review. Materials Reports, 2019, 33(7): 1206-1214.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17070037  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1206
1 Zhen G H, Wang H R, Qu J E, et al.Journal of materials Protection, 2014, 47(6), 52 (in Chinese).
甄国辉, 王海人, 屈钧娥, 等. 材料保护, 2014, 47(6), 52.
2 Koch G H, Brongers m P H, Thompson N G, et al.Journal of Endocrinology, 2002, 122(1), 23.
3 Li X, Zhang D, Liu Z, et al.Nature, 2015, 527 (7579), 441.
4 Ishikawa T, Takeuchi K, Kandori K, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 266 (1-3), 155.
5 Shen L Y, Shen Q F, Yang W.Corrosion & Protection, 1997, 14(5), 3 (in Chinese).
沈六一, 沈其昉, 杨武. 腐蚀与防护, 1997, 14(5), 3.
6 Tong X, Shahzad m B, Xu D, et al.materials Science & Engineering C,2017,71, 1079.
7 Xiang H L, Fan J C, Liu D, et al. Acta metallurgica Sinica, 2012, 48(9),1089 (in Chinese).
向红亮, 范金春, 刘东, 等. 金属学报, 2012, 48(9), 1089.
8 Li H W, Zhang T B, Zhang T Y. Acta metallurgica Sinica, 2008, 44(1), 39 (in Chinese).
李恒武, 张体宝, 张体勇. 金属学报, 2008, 44(1), 39.
9 Qin L Y, Song S Z, Li Y H, et al. Acta Physico-Chimica Sinica, 2008, 24(5), 895 (in Chinese).
秦丽雁, 宋诗哲, 李亚红, 等. 物理化学学报, 2008, 24(5), 895.
10 Was G S, Farkas D, Robertson I m.Current Opinion in Solid State and materials Science, 2012, 16(3), 134.
11 Wang Y X,Xiang H L,Yang C P, et al. Journal of Chinese Society for Corrosion and Protection, 2014, 34(6), 558 (in Chinese).
王永霞, 向红亮, 杨彩萍, 等.中国腐蚀与防护学报, 2014, 34(6), 558.
12 Liu T, Wang C, Shen H, et al.Corrosion Science, 2013, 76(2), 310.
13 Liu W, Zhou Q, Li L, et al.Journal of Alloys & Compounds, 2014, 598(12), 198.
14 Li R. Effect of Ti-concentration on the microstructure and hardness of 00Cr12Ni9mo4Cu maraging stainless steel. master's Thesis, ZheJiang University, China, 2008 (in Chinese).
李蓉. Ti含量对00Cr12Ni9mo4Cu马氏体时效不锈钢组织和硬度的影响. 硕士学位论文, 浙江大学, 2008.
15 Yao L.The effect and action mechanism of Al element on microstucture and properties of 17-7PH, 2205 stainless steel. master's Thesis, Lan Zhou University of Technology, China, 2013 (in Chinese).
姚亮. Al元素对17-7PH、2205不锈钢组织、性能的影响及作用机制. 硕士学位论文, 兰州理工大学, 2013.
16 Wang L P, Dong W X, Guo E J, et al.Hot Working Technology, 2013, 42(2), 63 (in Chinese).
王丽萍, 董文学, 郭二军, 等. 热加工工艺, 2013, 42(2), 63.
17 Toor I U H, Hyun P J, Kwon H S.Corrosion Science, 2007, 50(2), 404.
18 Wang J, Uggowitzer P J, magdowski R, et al.Scripta materialia, 1998, 40(1), 123.
19 Liang C H, Zhang J D. Corrosion Science and Protection Technology, 1995, 7(4), 336 (in Chinese).
梁成浩, 张继德. 腐蚀科学与防护技术, 1995, 7(4), 336.
20 Jing H m, Wu X Q. Acta metallurgica Sinica, 2002, 38(10), 1067 (in Chinese).
敬和民, 吴欣强. 金属学报, 2002, 38(10), 1067.
21 Li S J. Effect of composition on microstruture and properties of 00Cr25Ni7mo3N duplex stainless steel. master's Thesis, Kun ming University of Science and Technology, China,2011 (in Chinese).
李树健. 成分对00Cr25Ni7mo3N双相不锈钢组织及性能的影响. 硕士学位论文, 昆明理工大学, 2011.
22 Tian S C. Petro-Chemical Equipment,1994, 8(5), 43 (in Chinese).
田世昌. 石油化工设备技术, 1994, 8(5), 43.
23 Zhu Y. Effect of Ni, mn, N on microstructure and properties of 2507 super duplex stainsteel steel. master's Thesis, Harbin University of Science and Technology, China, 2014 (in Chinese).
朱岩. Ni、mn、N对2507超级双相不锈钢组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2014.
24 Yang W, Yuan S B. Corrosion & Protection, 1992, 13(6), 286 (in Chinese).
杨武, 袁世彪. 腐蚀与防护, 1992, 13(6), 286.
25 Jiang Z H, Han J P, Li Y.material Research Innovations, 2014, 18(S5), S5-9.
26 Kim J K, Kim Y H, Uhm S H, et al.Corrosion Science, 2009, 51(6) 2716.
27 Ren P, Yang Y F, Zhu S L, et al. Corrosion Science, 2018, 18(9), 1573.
28 Li D G. Effect of vanadium and nickel on properities of 18Cr-2mo ferritic stainless steel. master's Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese).
李达岗. 钒和镍对18Cr-2mo铁素体不锈钢性能的影响. 硕士学位论文, 上海交通大学,2013.
29 Ras m H, Pistorius P C.Corrosion Science, 2002, 44(11), 2479.
30 Yang J, Zou D N, Li X m, et al.Journal of Iron and Steel Research (International), 2007, 14(1), 47.
31 Zhang H m. Effect of rare-earth Ce on the corrosion resistance and antibacterial property of 2Cr13 stainless steel. master's Thesis, Inner mongolia University of Science & Technology, China, 2011 (in Chinese).
张慧敏. 稀土元素Ce对2Cr13不锈钢耐蚀性与抗菌性的影响. 硕士学位论文, 内蒙古科技大学, 2011.
32 Liu X, Wang L m. Chinese Rare Earths, 2017(3), 1 (in Chinese).
刘晓, 王龙妹. 稀土, 2017(3), 1.
33 Wang Y, Zhang Z J, Zhang X Y, et al. The Chinese Journal of Nonferrous metals, 2015(7), 1858 (in Chinese).
王勇, 张正江, 张旭昀, 等. 中国有色金属学报, 2015(7), 1858.
34 Luo T J, Yang Y S, Li Y J, et al. Electrochimica Acta, 2009, 54(26), 6433.
35 Chen G A, Yang W Y, Sun Z Q, et al. Acta metallurgica Sinica, 2007, 43(8), 785 (in Chinese).
陈国安, 杨王玥, 孙祖庆, 等. 金属学报, 2007, 43(8), 785.
36 Zheng H, Lu S, Su Q, et al.International Journal of Refractory metals & Hard materials, 2008, 26(1), 1.
37 Zhao L P, Wang J F, ma Y L, et al. Iron and Steel, 2010, 45(4), 65 (in Chinese).
赵莉萍, 王锦飞, 麻永林, 等. 钢铁, 2010, 45(4), 65.
38 Zhang H m, Cui C Y, Zhao L P, et al.Journal of the Chinese Rare Earth Society, 2011, 29(1), 100 (in Chinese).
张慧敏, 崔朝宇, 赵莉萍, 等. 中国稀土学报, 2011, 29(1), 100.
39 Liu X, ma L F, Li Y G.Transantions of materials and Heat Treatment, 2016, 37(1), 112 (in Chinese).
刘晓, 马利飞, 李运刚.材料热处理学报, 2016, 37(1), 112.
40 Zhao L P, Yuan X, Li Z.Chinese Rare Earths, 2015, 36(3), 78 (in Chinese).
赵莉萍, 袁雪, 李钊.稀土, 2015, 36(3), 78.
41 Lin Q, Guo F, Zhu X Y.Journal of Rare Earths, 2007, 25(4), 485.
42 Zhao L P, Wu L F, Zhao Y T, et al.Corrosion Science and Protection Technology, 2010, 22(3), 173 (in Chinese).
赵莉萍, 吴立凡, 赵勇桃, 等. 腐蚀科学与防护技术, 2010, 22(3), 173.
43 Ruan X m. Effects of Gd addition on microstructure and mechanical pro-perties of 5Cr5moSiV1 steel. master's Thesis, Nanchang University, China, 2015 (in Chinese).
阮先明. 稀土Gd对5Cr5moSiV1钢组织及性能的影响. 硕士学位论文, 南昌大学, 2015.
44 Fu H, Xiao Q, Kuang J, et al.materials Science & Engineering A, 2007, 466(1-2), 160.
45 Baik Y, Yong C, moon B m, et al.Physics of metals & metallography, 2015, 116(11), 1135.
46 Pint B A.Oxidation of metals,1996, 45(1), 1.
47 Qin L, Feng G, Zhu X.Journal of Rare Earths, 2007, 25(4),485.
48 Blajiev O, Chigirinskaya L, Chernova G.Electrochimica Acta, 1998, 43(1), 199.
49 Zhang X H. Effect of C, Si, Cr and mo contents on microstructure and porperties of 2507 cast duplex stainless steels. master's Thesis, Harbin University of Science and Technology, China, 2014 (in Chinese).
张兴洪. C、Si、Cr、mo含量对2507铸造双相不锈钢组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2014.
50 Yan Y F, Xu X Q.Journal of materials Protection, 2016, 49(1), 36 (in Chinese).
颜雨飞, 徐向棋. 材料保护, 2016, 49(1), 36.
51 Guo T m, Jia J G, Nan X L et al.Transactions of materials and Heat Treatment, 2013, 34(5), 125 (in Chinese).
郭铁明, 贾建刚, 南雪丽, 等. 材料热处理学报, 2013, 34(5), 125.
52 Vasudevan m, Bhaduri A K, Baldev Raj, et al.Journal of materials Processing Technology, 2003, 142(1), 20.
53 Lu L, Yang H.Hot Working Technology, 2010, 39(17), 39 (in Chinese).
路磊, 杨华. 热加工工艺, 2010, 39(17), 39.
54 Wilmes S, Zwick G.The Use of Tool Steels, Experience and Research. 2002, 1, 227.
55 Chen G S, Wu B H, Zhou L C, et al. Acta metallurgica Sinica, 1993, 6(2), 81 (in Chinese).
陈国生,吴波华,周乐成,等. 金属学报, 1993, 6(2), 81.
56 Banda S C K, merwe J V D.British Corrosion Journal, 2014, 49(1), 32.
57 Sherif E S m, Potgieter J H, Comins J D, et al.Corrosion Science, 2009, 51(6),1364.
58 Sherif E S m, Potgieter J H, Comins J D, et al.Journal of Applied Electrochemistry, 2009, 39(8), 1385.
59 Varga K, Barnard W O, Baradlai P.Journal of Iron and Steel Research(International), 1998,136(1-2), 29.
60 Wang Z X, Guo T m, Song J, et al.Journal of Gansu Sciences, 2014, 26(1), 62 (in Chinese).
王昭翔, 郭铁明, 宋俊, 等.甘肃科学学报, 2014, 26(1), 62.
61 Hui Z. The effect of boron element on corossion resistances of lCrl7 ferritic stainless steels. master's Thesis, Lanzhou University of Technology, China, 2013 (in Chinese).
惠枝. 硼元素对1Cr17不锈钢在酸性介质中腐蚀行为的影响. 硕士学位论文, 兰州理工大学, 2013.
62 Nai Q L, Zheng W J, Song Z G, et al.Journal of Iron and Steel Research, 2013, 25(6), 53 (in Chinese).
佴启亮, 郑文杰, 宋志刚, 等. 钢铁研究学报, 2013, 25(6), 53.
63 Bai G, Lu S, Li D, et al.Journal of the Electrochemical Society, 2015, 162(9), C473.
64 Zhang W, Yang S W, He X H. Transantions of materials and Heat Treatment, 2009, 30(1), 45 (in Chinese).
张崴, 杨善武, 贺信莱. 材料热处理学报, 2009, 30(1), 45.
65 Kasparova O V.Protection of metals & Physical Chemistry of Surfaces, 2013, 49(6), 734.
66 Zhang X Y, Lu H J, Xu D R, et al.Chemical Engineering & machinery, 2015, 42(3), 329 (in Chinese).
张旭昀, 芦海俊, 许东饶, 等. 化工机械, 2015, 42(3), 329.
67 Yang L Y, Liu W, Lu m X.Acta metallurgica Sinica, 2006, 42(12), 1279 (in Chinese).
杨丽颖, 柳伟, 路民旭. 金属学报, 2006, 42(12), 1279.
68 Xiang H L, Huang W L, Liu D, et al.Acta metallurgica Sinica, 2010, 46(3), 304 (in Chinese).
向红亮, 黄伟林, 刘东, 等. 金属学报, 2010, 46(3), 304.
69 Liu D, Xiang H L, Hu Y R.Foundry Technology, 2015(6), 1342 (in Chinese).
刘东, 向红亮, 胡育瑞. 铸造技术, 2015(6), 1342.
70 Azuma S, miyuki H, Kudo T.Transactions of the Iron & Steel Institute of Japan, 1996, 36,793.
71 Zhang X J, Gao F, Liu Z Y.Steel Research International, 2017, 88(2), 59.
72 Sun m, Yang Y Y, Luo m, et al. Acta metallurgica Sinica, 2015, 28(9), 1183 (in Chinese).
孙敏,杨媛媛,罗明,等. 金属学报, 2015, 28(9), 183.
73 Jin H P, Kim J K, Lee B H, et al.Scripta materialia, 2014, 76(2), 77.
74 Kumar P A, Babu S P K, Varghese A S.metallography microstructure & Analysis, 2017, 6(4), 324.
75 Jang C Y, Yang Y F, Zhang Z Y, et al. Acta metallurgica Sinica, 2018, 54(4), 581 (in Chinese).
蒋成洋,阳颖飞,张正义,等. 金属学报, 2018, 54(4), 581.
76 Jargelius-Pettersson R F A.Corrosion Science,1999, 41(8), 1639.
77 Lu Y H, Song Y Y, Chen S H, et al.Acta metallurgica Sinica, 2016, 52(3), 298 (in Chinese).
鲁艳红, 宋元元, 陈胜虎, 等. 金属学报, 2016, 52(3), 298.
78 Li Y S, Spiegel m, Shimada S.materials Letters, 2004, 58(29), 3787.
79 Newman R C.Corrosion Science, 1985, 25(5), 331.
80 Choi Y S, Shim J J, Kim J G.Journal of Alloys and Compounds, 2005, 391(1-2), 162.
81 Liang C H, Shigeo T J K W. materials Science and Technology, 1995(1), 72 (in Chinese).
梁成浩, 过川茂男.材料科学与工艺, 1995(1), 72.
82 Xu Q, Gao K, Lv W, et al.Corrosion Science, 2015, 102(2), 114.
83 Liang C H, Zhang J D.Corrosion Science and Protection Technology, 1995, 7(4), 336 (in Chinese).
梁成浩, 张继德. 腐蚀科学与防护技术, 1995, 7(4), 336.
84 Zhang X Y, Gao m H, Xu Z Y, et al.Journal of materials Engineering, 2013(8), 36 (in Chinese).
张旭昀, 高明浩, 徐子怡, 等. 材料工程, 2013(8), 36.
85 Hara T, Takahashi A, Asahi H, et al.Corrosion, 2000, 56(4), 419.
86 Banas J, mazurkiewicz A.materials Science & Engineering A, 2000, 277(1), 183.
87 Shu J, Bi H, Li X, et al.Corrosion Science, 2012, 57(2),89.
88 Zhang J X, Liu Y Z. IOP Conference Series, materials Science and Engineering, 2017,182, 1757.
89 Pardo A, merino m C, Carboneras m, et al.Corrosion Science, 2006, 48(5), 1075.
90 Sun T, Deng B, Xu J L, et al.Journal of Chinese Society for Corrosion and Protection, 2010, 30(6), 421 (in Chinese).
孙涛, 邓博, 徐菊良, 等. 中国腐蚀与防护学报, 2010, 30(6), 421.
[1] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[2] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[3] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[4] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[5] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[6] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[7] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[8] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[9] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[10] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[11] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[12] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[13] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[14] 王星星,彭 进,崔大田,薛 鹏,李 红,胡安明,孙国元. 银基钎料在制造业中的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1477-1485.
[15] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed